Jump to main content
Jump to site search

Issue 4, 2019
Previous Article Next Article

Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods

Author affiliations

Abstract

Solution-processed organo-lead halide perovskites have emerged as promising optical gain media for tunable coherent light sources. The lasing performance is generally determined by the as-synthesized crystal quality. Noble metal nanostructures have been widely utilized to enhance optical responses due to their unique property of localized surface plasmon resonance. Herein, we report a simple method to enhance the near-infrared amplified spontaneous emission (ASE) performance of MAPbI3 polycrystalline films by solution-processing a PMMA spacer layer and an Au NR-doped PMMA top layer on perovskite thin films. As a result, the ASE threshold of the triple-layer perovskite film was significantly reduced by around 36% and the ASE intensity increased by 13.9-fold, compared to the pristine film. The underlying mechanism was attributed to the combined effects of surface passivation by PMMA and plasmon resonance enhancement of Au NRs. The passivation effect results in suppressing the nonradiative recombination and prolonging excited state decay, which have been investigated by transient absorption and pump–probe measurements. The plasmon effect is systematically studied through distance-dependent and spectra-dependent plasmon enhanced emission. The perovskite films with PMMA and Au NR coating showed great stability for 180 min under intense pulse laser continuous irradiation. The improved ASE performance still remained after leaving the film under the atmosphere for more than one month. We have successfully demonstrated a highly stable and sustained ASE output from MAPbI3 films under pulse laser excitation. This study provides a general approach for exploring plasmonic nanostructures in combination with polymers in the development and application of low-cost solution-processed semiconductor lasers.

Graphical abstract: Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 Nov 2018, accepted on 27 Dec 2018 and first published on 28 Dec 2018


Article type: Paper
DOI: 10.1039/C8NR08952C
Citation: Nanoscale, 2019,11, 1959-1967

  •   Request permissions

    Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods

    X. Wu, X. Jiang, X. Hu, D. Zhang, S. Li, X. Yao, W. Liu, H. Yip, Z. Tang and Q. Xu, Nanoscale, 2019, 11, 1959
    DOI: 10.1039/C8NR08952C

Search articles by author

Spotlight

Advertisements