Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 6, 2019
Previous Article Next Article

Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(II)

Author affiliations

Abstract

Two-dimensional (2D) nanomaterials have been identified as one of the promising materials due to their great promise for waste treatment. Currently, the investigation of wastewater remediation is highly imperative and still remains challenging. Here, a novel class of 2D MAX@titanate nanocomposites was fabricated by a simple oxidation and alkalization method, and they exhibited different morphologies and impressive elimination performance. The Pb(II) uptake processes were dramatically affected by the solution pH and reached equilibrium quickly. Abundant functional groups and enhanced specific surface areas endowed T-NTO nanofibers with outstanding adsorption capacity of 328.9 mg gāˆ’1 at pH = 5.0 and T = 298 K, which was much higher than that of T-KTO nanoribbons. Moreover, the possible mechanism was expounded with the aid of Raman, FT-IR, XRD and XPS analyses, in which the synergistic effect of surface complexation and ion exchange significantly contributed to the adsorption performance. On the basis of above analyses, this study not only presents a novel and facile strategy for preparing T-NTO and T-KTO nanostructures with superior adsorption capacity, but also broadens the prospective applications of other functional MAX-derived nanostructures in environmental cleanup.

Graphical abstract: Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(ii)

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Oct 2018, accepted on 03 Jan 2019 and first published on 04 Jan 2019


Article type: Paper
DOI: 10.1039/C8DT04301A
Citation: Dalton Trans., 2019,48, 2100-2107

  •   Request permissions

    Two-dimensional MAX-derived titanate nanostructures for efficient removal of Pb(II)

    P. Gu, S. Zhang, C. Zhang, X. Wang, A. Khan, T. Wen, B. Hu, A. Alsaedi, T. Hayat and X. Wang, Dalton Trans., 2019, 48, 2100
    DOI: 10.1039/C8DT04301A

Search articles by author

Spotlight

Advertisements