Jump to main content
Jump to site search


Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3-xO4 solid solution

Abstract

Hierarchical bimetal oxide solid solutions with mesoporous hollow-interior architecture have greatly promising applications in environmental catalysis due to their exceptional catalytic performances, while facile synthesis of such unique architecture is still challenging. Herein, mesoporous hollow nanospherical (MHS) MnxCo3-xO4 solid solutions with tunable Mn/Co molar ratios in spinel-type cubic crystal phase, fabricated by a facile solvothermal alcoholysis approach, have been developed to catalyze acetone oxidation for the first time. Experimental results attest that MHS Mn1.20Co1.80O4 gave the optimal acetone oxidation activity, completely achieving 100% acetone conversion and 100% CO2 selectivity at 140oC under the reaction conditions of acetone concentration = 1000 ppm, 20%O2/N2 and WHSV = ca. 93,000 mL/gcat•h. This superior activity of MHS Mn1.20Co1.80O4 can be mainly ascribed to the strong synergetic effect of the unique mesoporous hollow nanospherical feature, abundant oxygen vacancies and surface active oxygen species, the enhanced chemical nature resulted from more Mn4+, Mn3+ and Co3+ reactive sites, and the improved redox capacities. Kinetics studies afford direct evidence to validate that the strong synergetic effect rather than individual factor played the critical role in determining the acetone oxidation activity. Meanwhile, a plausible catalytic mechanism of acetone oxidation over MHS MnxCo3-xO4 solid solution has been proposed and elaborated in details by correlating the structure-activity relationship. Futhermore, MHS Mn1.20Co1.80O4 also presented excellent long-term stability and good water tolerance due to its highly stable crystal phase and robust morphological structure, showing good potential in eliminating volatile organic compounds.

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Sep 2019, accepted on 10 Oct 2019 and first published on 11 Oct 2019


Article type: Paper
DOI: 10.1039/C9CY01791G
Catal. Sci. Technol., 2019, Accepted Manuscript

  •   Request permissions

    Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3-xO4 solid solution

    J. Wang, C. Zhang, S. Yang, H. Liang and Y. Men, Catal. Sci. Technol., 2019, Accepted Manuscript , DOI: 10.1039/C9CY01791G

Search articles by author

Spotlight

Advertisements