Jump to main content
Jump to site search

Issue 10, 2019
Previous Article Next Article

Deep core photoionization of iodine in CH3I and CF3I molecules: how deep down does the chemical shift reach?

Author affiliations

Abstract

Hard X-ray electron spectroscopic study of iodine 1s and 2s photoionization of iodomethane (CH3I) and trifluoroiodomethane (CF3I) molecules is presented. The experiment was carried out at the SPring-8 synchrotron radiation facility in Japan. The results are analyzed with the aid of relativistic molecular and atomic calculations. It is shown that charge redistribution within the molecule is experimentally observable even for very deep levels and is a function of the number of electron vacancies. We also show that the analysis of Auger spectra subsequent to hard X-ray photoionization can be used to provide insight into charge distribution in molecules and highlight the necessity of quantum electrodynamics corrections in the prediction of core shell binding energies in molecules that contain heavy atoms.

Graphical abstract: Deep core photoionization of iodine in CH3I and CF3I molecules: how deep down does the chemical shift reach?

Back to tab navigation

Article information


Submitted
28 Nov 2018
Accepted
11 Feb 2019
First published
11 Feb 2019

This article is Open Access

Phys. Chem. Chem. Phys., 2019,21, 5448-5454
Article type
Paper

Deep core photoionization of iodine in CH3I and CF3I molecules: how deep down does the chemical shift reach?

N. Boudjemia, K. Jänkälä, T. Gejo, K. Nagaya, K. Tamasaku, M. Huttula, M. N. Piancastelli, M. Simon and M. Oura, Phys. Chem. Chem. Phys., 2019, 21, 5448
DOI: 10.1039/C8CP07307D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements