Jump to main content
Jump to site search

Issue 38, 2019
Previous Article Next Article

Quantifying multiple crystallite orientations and crystal heterogeneities in complex thin film materials

Author affiliations

Abstract

Thin film materials have become increasingly complex in morphological and structural design. When characterizing the structure of these films, a crucial field of study is the role that crystallite orientation plays in giving rise to unique electronic properties. It is therefore important to have a comparative tool for understanding differences in crystallite orientation within a thin film, and also the ability to compare the structural orientation between different thin films. Herein, we designed a new method dubbed the mosaicity factor (MF) to quantify crystallite orientation in thin films using grazing incidence wide-angle X-ray scattering (GIWAXS) patterns. This method for quantifying the orientation of thin films overcomes many limitations inherent in previous approaches such as noise sensitivity, the ability to compare orientation distributions along different axes, and the ability to quantify multiple crystallite orientations observed within the same Miller index. Following the presentation of MF, we proceed to discussing case studies to show the efficacy and range of application available for the use of MF. These studies show how using the MF approach yields quantitative orientation information for various materials assembled on a substrate.

Graphical abstract: Quantifying multiple crystallite orientations and crystal heterogeneities in complex thin film materials

Back to tab navigation

Supplementary files

Article information


Submitted
28 Jun 2019
Accepted
09 Aug 2019
First published
09 Aug 2019

CrystEngComm, 2019,21, 5707-5720
Article type
Paper
Author version available

Quantifying multiple crystallite orientations and crystal heterogeneities in complex thin film materials

J. Ogle, D. Powell, E. Amerling, Detlef-M. Smilgies and L. Whittaker-Brooks, CrystEngComm, 2019, 21, 5707
DOI: 10.1039/C9CE01010F

Social activity

Search articles by author

Spotlight

Advertisements