Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 32, 2019
Previous Article Next Article

A natural solution to photoprotection and isolation of the potent polyene antibiotic, marinomycin A

Author affiliations

Abstract

The photoprotection and isolation of marinomycin A using sporopollenin exine capsules (SpECs) derived from the spores of the plant Lycopodium clavatum is described. The marinomycins have a particularly short half-life in natural light, which severely impacts their potential biological utility given that they display potent antibiotic and anticancer activity. The SpEC encapsulation of the marinomycin A dramatically increases the half-life of the polyene macrodiolide to the direct exposure to UV radiation by several orders of magnitude, thereby making this a potentially useful strategy for other light sensitive bioactive agents. In addition, we report that the SpECs can also be used to selectively extract culture broths that contain the marinomycins, which provides a significantly higher recovery than with conventional XAD resins and provides concomitant photoprotection.

Graphical abstract: A natural solution to photoprotection and isolation of the potent polyene antibiotic, marinomycin A

Back to tab navigation

Supplementary files

Article information


Submitted
21 Mar 2019
Accepted
20 May 2019
First published
21 May 2019

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2019,10, 7549-7553
Article type
Edge Article

A natural solution to photoprotection and isolation of the potent polyene antibiotic, marinomycin A

C. S. Bailey, J. S. Zarins-Tutt, M. Agbo, H. Gao, A. Diego-Taboada, M. Gan, R. B. Hamed, E. R. Abraham, G. Mackenzie, P. A. Evans and R. J. M. Goss, Chem. Sci., 2019, 10, 7549
DOI: 10.1039/C9SC01375J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements