Jump to main content
Jump to site search

Issue 21, 2019
Previous Article Next Article

Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides

Author affiliations

Abstract

Geometrically flexible 9-borabicyclo[3.3.1]nonyl units within the secondary coordination sphere enable isolation of high-spin Fe(II)-dihydrides stabilized by boron–hydride interactions and a rare example of an isolable S = 3/2 reduction product. The borane-capped Fe(II)-dihydride: (1) rapidly deprotonates E–H (E = N, O, P, S) bonds to afford borane-stabilized Fe adducts and (2) releases H2 upon exposure to π-acids. The Lewis acids provide an avenue for redox-leveling in analogy to the near constant operating potential for N2 reduction in nitrogenase.

Graphical abstract: Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jan 2019
Accepted
25 Apr 2019
First published
07 May 2019

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2019,10, 5539-5545
Article type
Edge Article

Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides

J. J. Kiernicki, J. P. Shanahan, M. Zeller and N. K. Szymczak, Chem. Sci., 2019, 10, 5539
DOI: 10.1039/C9SC00561G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements