Jump to main content
Jump to site search

Issue 68, 2019
Previous Article Next Article

Scalable lignin/graphite electrodes formed by mechanochemistry

Author affiliations

Abstract

Lignin is a promising candidate for energy storage because of its abundance, wide geographic distribution, and low cost as it is mainly available as a low value product from processing of wood into paper pulp. Lignin contains large amounts of potential quinone groups, which can be oxidized and reduced in a two electron process. This redox reaction makes lignin suitable for charge storage. However, lignin is insulating and therefore conductive materials are necessary in lignin electrodes, for whom the cost of the conductive materials hinders the scalable application. Among the organic conductive materials, graphite is one of the cheapest and is easily acquired from nature. In this work, we combine graphite and lignosulfonate (LS) and fabricate LS/graphite organic electrodes under a solvent-free mechanical milling method, without additives. The graphite is sheared into small particles with a size range from 50 nm to 2000 nm. Few-layer graphene is formed during the ball milling process. The LS/graphite hybrid material electrodes with primary stoichiometry of 4/1 (w/w) gives a conductivity of 280 S m−1 and discharge capacity of 35 mA h g−1. It is a promising material for the scalable production of LS organic electrodes.

Graphical abstract: Scalable lignin/graphite electrodes formed by mechanochemistry

Back to tab navigation

Supplementary files

Article information


Submitted
17 Sep 2019
Accepted
18 Nov 2019
First published
02 Dec 2019

This article is Open Access

RSC Adv., 2019,9, 39758-39767
Article type
Paper

Scalable lignin/graphite electrodes formed by mechanochemistry

L. Liu, N. Solin and O. Inganäs, RSC Adv., 2019, 9, 39758
DOI: 10.1039/C9RA07507K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements