Jump to main content
Jump to site search

Issue 39, 2019
Previous Article Next Article

Two is better than one: difunctional high-affinity PSMA probes based on a [CpM(CO)3] (M = Re/99mTc) scaffold

Author affiliations

Abstract

More than 10% of all men will be given the diagnosis “prostate cancer” during their lifetime. Most of the current radio-diagnostic vehicles involve both expensive and localized production with cyclotrons as well as the use of bulky chelators for the radiometal. We report the use of a new multifunctional cyclopentadiene (Cp) platform to prepare difunctional and monofunctional, PSMA-targeting rhenium and technetium-99m complexes. The Cp-complexes and the free ligands are prepared by straightforward functionalization with either one or two Lys-urea-Glu (LuG) PSMA binding motifs. Cell binding assays revealed that the difunctional rhenium complex displays a dissociation constant (KD = 2.1 nM) that is an order of magnitude lower than the monofunctional compound (KD = 24.2 nM). The 99mTc complexes can be prepared in one step and ≤15 min in high yields. These difunctional Cp-Re(I)/99mTc(I) complexes represent a new class of imaging agents with binding affinities comparable to clinically evaluated compounds. Additionally, this study demonstrates that the Cp-platform can readily be derivatized with amine-containing biomolecules. Extending this work to incorporate both targeting and therapeutic moieties could lead to theranostic systems with Re/99mTc.

Graphical abstract: Two is better than one: difunctional high-affinity PSMA probes based on a [CpM(CO)3] (M = Re/99mTc) scaffold

Back to tab navigation

Supplementary files

Article information


Submitted
14 Jun 2019
Accepted
16 Sep 2019
First published
16 Sep 2019

Dalton Trans., 2019,48, 14600-14605
Article type
Communication

Two is better than one: difunctional high-affinity PSMA probes based on a [CpM(CO)3] (M = Re/99mTc) scaffold

A. Frei, E. Fischer, B. C. Childs, J. P. Holland and R. Alberto, Dalton Trans., 2019, 48, 14600
DOI: 10.1039/C9DT02506E

Social activity

Search articles by author

Spotlight

Advertisements