Issue 33, 2019

Towards comparative investigation of Er- and Yb-based SMMs: the effect of the coordination environment configuration on the magnetic relaxation in the series of heteroleptic thiocyanate complexes

Abstract

We prepared and studied two similar series of Er and Yb thiocyanates, involving [Ln(H2O)5(NCS)3]·H2O (1Er, 1Yb) as well as the molecular and ionic complexes with 2,2′-bipyridine (bpy) and 1,10-phenantroline (phen), [Ln(H2O)(bpy)2(NCS)3]·0.5(bpy)·H2O (2Er, 2Yb), [Ln(H2O)(phen)2(NCS)3]·phen·0.5H2O (3Er, 3Yb), [Hbpy][Ln(bpy)2(NCS)4]·H2O (4Er, 4Yb) and [Hphen][Ln(phen)2(NCS)4] (5Er, 5Yb). All the complexes were found to exhibit the properties of field-induced single-molecule magnets. For 1Yb, the effective value of the energy barrier for magnetization reversal, Δeff/kB, equals to 50 K, which is among the highest ones currently known for molecular SMMs based on Yb3+. The obtained data are discussed involving essential structural features of the complexes, namely the configuration of the Ln environment, i.e. its composition and geometry as well as mutual distribution of different donating centers. To the best of our knowledge, this work also involves experimental investigation of the largest and thus sufficiently representative series of similar mononuclear SMMs based on Er and Yb within one study.

Graphical abstract: Towards comparative investigation of Er- and Yb-based SMMs: the effect of the coordination environment configuration on the magnetic relaxation in the series of heteroleptic thiocyanate complexes

Supplementary files

Article information

Article type
Paper
Submitted
28 May 2019
Accepted
23 Jul 2019
First published
23 Jul 2019

Dalton Trans., 2019,48, 12644-12655

Towards comparative investigation of Er- and Yb-based SMMs: the effect of the coordination environment configuration on the magnetic relaxation in the series of heteroleptic thiocyanate complexes

S. P. Petrosyants, K. A. Babeshkin, A. V. Gavrikov, A. B. Ilyukhin, E. V. Belova and N. N. Efimov, Dalton Trans., 2019, 48, 12644 DOI: 10.1039/C9DT02260K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements