Jump to main content
Jump to site search

Issue 41, 2018
Previous Article Next Article

Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors

Author affiliations

Abstract

One-pot reactions between CuI and methyl or methyl 2-amino-isonicotinate give rise to the formation of two coordination polymers (CPs) based on double zig–zag Cu2I2 chains. The presence of a NH2 group in the isonicotinate ligand produces different supramolecular interactions affecting the Cu–Cu distances and symmetry of the Cu2I2 chains. These structural variations significantly modulate their physical properties. Thus, both CPs are semiconductors and also show reversible thermo/mechanoluminescence. X-ray diffraction studies carried out under different temperature and pressure conditions in combination with theoretical calculations have been used to rationalize the multi-stimuli-responsive properties. Importantly, a bottom-up procedure based on fast precipitation leads to nanofibers of both CPs. The dimensions of these nanofibres enable the preparation of thermo/mechanochromic film composites with polyvinylidene difluoride. These films are tens of nanometers in thickness while being centimeters in length, representing smaller thicknesses so far reported for thin-film composites. This nanomaterial integration of CPs could represent a source of alternative nanomaterials for opto-electronic device fabrication.

Graphical abstract: Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Jul 2018, accepted on 23 Aug 2018 and first published on 23 Aug 2018


Article type: Edge Article
DOI: 10.1039/C8SC03085E
Citation: Chem. Sci., 2018,9, 8000-8010
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors

    J. Conesa-Egea, N. Nogal, J. I. Martínez, V. Fernández-Moreira, U. R. Rodríguez-Mendoza, J. González-Platas, C. J. Gómez-García, S. Delgado, F. Zamora and P. Amo-Ochoa, Chem. Sci., 2018, 9, 8000
    DOI: 10.1039/C8SC03085E

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements