Organic loading rate shock impact on extracellular polymeric substances and physicochemical characteristics of nitrifying sludge treating high-strength ammonia wastewater under unsteady-state conditions
Abstract
Laboratory experimentation was used to investigate the impact of the organic loading rate shock on extracellular polymeric substances (EPSs) and the physicochemical characteristics of nitrifying sludge (NS) treating high-strength ammonia wastewater. The increased organic loading rates (OLRs) strongly influenced the stability of the NS with regard to nutrient removal, biomass–liquid separation, and surface properties, leading to the sludge system collapse at the OLR of 0.75 kg COD per kg MLVSS d. However, an incomplete recovery of the NS after the high OLRs shock was observed when decreasing the OLRs. In addition, the variations of OLRs resulted in relatively stable amounts of tightly bound EPS (TB-EPS), but a significant change in loosely bound EPS (LB-EPS). Both in LB-EPS and TB-EPS, the proteins (PN) contents and proteins to polysaccharides (PN/PS) ratios decreased with the increase in OLRs. Results from the excitation emission matrix spectra implied that the tryptophan PN-like substances were the major components in EPS at low OLRs, while the humic acid-like and fulvic acid-like substrates increased markedly at high OLRs. Furthermore, correlation analysis demonstrated that PN and the PN/PS ratio were the most important factors in determining the physicochemical properties of the NS. It was indicated that the PN could accurately reflect the sludge properties of the NS, and thus effectively change the surface properties of the sludge, contributing to the cohesion between the aggregates to maintain a stable structure.