Issue 12, 2018

Hydrazinopyrimidine derived novel Al3+ chemosensor: molecular logic gate and biological applications

Abstract

Cost-effective and highly sensitive biocompatible probes for the detection of Al3+ have tremendously important practical applications. Herein, we report for the first time, the hydrazinopyrimidine based Al3+ chemosensor L (1-[(4,6-dimethyl-pyrimidin-2-yl)-hydrazonomethyl]-naphthalen-2-ol) prepared by the condensation of 2-hydroxy-1-naphthaldehyde and 4,6-dimethyl-2-hydrazino-pyrimidine. Our as-synthesized chemosensor L (Φ = 0.0066) shows ∼15 fold fluorescence enhancement in the presence of Al3+ (Φ = 0.0955, Ka = 1.9 × 104 M−1) via chelation enhanced fluorescence (CHEF), excited state intramolecular proton transfer (ESIPT), and inhibited photo-induced electron transfer (PET) phenomena. The limit of detection (LOD) and limit of quantification (LOQ) were estimated to be 2.78 μM and 9.27 μM, respectively. Furthermore, for the first time, a hydrazino pyrimidine based ‘INHIBIT’ molecular logic gate for Al3+ was successfully developed using the fluorescence properties of L. The experimental sensing mechanisms of L for Al3+ were corroborated by theoretical calculations. Biocompatibility and good water-solubility properties of a pyrimidine moiety of L inspired us to investigate Al3+ imaging in human embryonic kidney cell lines, HEK293, and the results for practical applications are highly promising.

Graphical abstract: Hydrazinopyrimidine derived novel Al3+ chemosensor: molecular logic gate and biological applications

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2017
Accepted
19 Apr 2018
First published
20 Apr 2018

New J. Chem., 2018,42, 9424-9435

Hydrazinopyrimidine derived novel Al3+ chemosensor: molecular logic gate and biological applications

B. Das, S. Dey, G. P. Maiti, A. Bhattacharjee, A. Dhara and A. Jana, New J. Chem., 2018, 42, 9424 DOI: 10.1039/C7NJ05095J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements