Issue 12, 2018

Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells

Abstract

Side-chain-type polymer architectures have been extensively studied for development of highly conductive fuel cell membranes. However, the commonly used rigid, hydrophobic spacers (between the ionic end-group and polymer backbone) limit self-assembly of ionic side-chains and, therefore, ion transport. Herein, we report a flexible, hydrophilic side-chain-type anion exchange membrane (AEM), where ethylene oxide spacers are incorporated into imidazolium-containing cationic side-chains. AFM and SAXS analysis confirm that the flexible spacers facilitate self-assembly of the ionic side-chains to form continuous conducting channels. Most importantly, both in situ FTIR spectroscopy and molecular dynamic theory simulations indicate that the ethylene oxide spacers are capable of hydrogen bonding to both H2O molecules and hydrated OH ions. This unique auxiliary function facilitates both ion and H2O transport during fuel cell operation. The resultant AEM exhibits a peak power density of 437 mW cm−2 at 65 °C when tested in a H2/O2 single-cell anion-exchange membrane fuel cell, which is among the highest reported for comparable side-chain-type AEMs.

Graphical abstract: Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2018
Accepted
09 Oct 2018
First published
09 Oct 2018

Energy Environ. Sci., 2018,11, 3472-3479

Beneficial use of rotatable-spacer side-chains in alkaline anion exchange membranes for fuel cells

Y. Zhu, L. Ding, X. Liang, M. A. Shehzad, L. Wang, X. Ge, Y. He, L. Wu, J. R. Varcoe and T. Xu, Energy Environ. Sci., 2018, 11, 3472 DOI: 10.1039/C8EE02071J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements