Issue 12, 2018

Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells

Abstract

Achieving long-term operational stability at a high efficiency level for perovskite solar cells is the most challenging issue toward commercialization of this emerging photovoltaic technology. Here, we investigated the cooperation of a Lewis base and a Lewis acid by combining commercial bis-PCBM mixed isomers as the Lewis acid in the antisolvent and N-(4-bromophenyl)thiourea (BrPh-ThR) as the Lewis base in the perovskite solution precursor. The combination of the Lewis base and the Lewis acid synergistically passivates Pb2+ and PbX3− antisite defects, enlarges the perovskite grain size, and improves charge-carrier separation and transport, leading to improved device efficiency from 19.3% to 21.7%. In addition, this Lewis base and acid combination also suppresses moisture incursion and passivates pinholes generated in the hole-transporting layer. The unsealed devices remained at 93% of the initial efficiency value in ambient air (10–20% relative humidity) after 3600 h at 20–25 °C and dropped by 10% after 1500 h under continuous operation at 1-sun illumination and 55 °C in nitrogen with maximum power-point tracking.

Graphical abstract: Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2018
Accepted
05 Oct 2018
First published
08 Oct 2018

Energy Environ. Sci., 2018,11, 3480-3490

Author version available

Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells

F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li, J. J. Berry, S. M. Zakeeruddin, K. Zhu and M. Grätzel, Energy Environ. Sci., 2018, 11, 3480 DOI: 10.1039/C8EE02252F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements