Issue 5, 2018

Highly efficient aqueous phase reduction of nitroarenes catalyzed by phosphine-decorated polymer immobilized ionic liquid stabilized PdNPs

Abstract

Palladium nanoparticles stabilized by lightly cross-linked phosphine-decorated polymer immobilized ionic liquids (PIIL) and their PEGylated counterparts (PEGPIIL) are highly effective catalysts for the aqueous phase hydrogenation and sodium borohydride-based reduction of a wide range of nitroaromatic and heteroaromatic compounds under mild conditions with low catalyst loadings. Introduction of extensive cross-linking with tris(4-vinylphenyl)phosphine to isolate the phosphine-based heteroatom and limit the number of surface Pd⋯P interactions did not have a significant influence on catalyst performance. Comparative testing revealed PdNPs immobilized on lightly cross-linked phsophine-decoarted PEGylated polymer to be a highly efficient catalyst for the aqueous phase reduction of nitroarenes with a TON of 36 000 (TOF = 2580 h−1) for hydrogenation and a TON of 274 000 (TOF = 17 125 h−1) for transfer hydrogenation. Even though these reactions occur under diffusion control due the poor solubility of the substrate these values are the highest to be reported for the room temperature aqueous phase reduction of nitroarenes catalyzed by a nanoparticle-based system. A continuous flow reduction of nitrobenzene in a packed bed reactor operated over a period of 250 min with no sign of catalyst deactivation and the corresponding space-time-yield of 0.738 g L−1 min−1 is a marked improvement on that of 0.384 g L−1 min−1 obtained in batch. The same system also catalyzes a tandem Suzuki–Miyaura cross coupling-nitroarene reduction sequence to afford high yields of biaryl amine in an operationally straightforward single-pot procedure. This is a highly versatile protocol which will enable the aromatic nitro fragment to be introduced as a nitro-substituted aryl or heteroaryl halide and as such will lend itself to rapid diversification for the synthesis of a wide range of amines.

Graphical abstract: Highly efficient aqueous phase reduction of nitroarenes catalyzed by phosphine-decorated polymer immobilized ionic liquid stabilized PdNPs

Supplementary files

Article information

Article type
Paper
Submitted
18 Dec 2017
Accepted
07 Feb 2018
First published
08 Feb 2018

Catal. Sci. Technol., 2018,8, 1454-1467

Highly efficient aqueous phase reduction of nitroarenes catalyzed by phosphine-decorated polymer immobilized ionic liquid stabilized PdNPs

S. Doherty, J. G. Knight, T. Backhouse, A. Bradford, F. Saunders, R. A. Bourne, T. W. Chamberlain, R. Stones, A. Clayton and K. Lovelock, Catal. Sci. Technol., 2018, 8, 1454 DOI: 10.1039/C7CY02557B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements