Jump to main content
Jump to site search

Issue 12, 2018
Previous Article Next Article

Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels

Author affiliations

Abstract

Achieving low cost and high efficiency lignocellulose deconstruction is a critical step towards widespread adoption of lignocellulosic biofuels. Certain ionic liquid (IL)-based pretreatment processes effectively reduce recalcitrance of lignocellulose to enzymatic degradation but require either costly separations following pretreatment or novel IL compatible processes to mitigate downstream toxicity. Here we demonstrate at benchtop and pilot bioreactor scales a separation-free, intensified process for IL pretreatment, saccharification, and fermentation of sorghum biomass to produce the sesquiterpene bisabolene, a precursor to the renewable diesel and jet fuel bisabolane. The deconstruction process employs the IL cholinium lysinate ([Ch][Lys]), followed by enzymatic saccharification with the commercial enzyme cocktails Cellic CTec2 and HTec2. Glucose yields above 80% and xylose yields above 60% are observed at all scales tested. Unfiltered hydrolysate is fermented directly by Rhodosporidium toruloides – with glucose, xylose, acetate and lactate fully consumed during fermentation at all scales tested. Bisabolene titers improved with scale from 1.3 g L−1 in 30 mL shake flasks to 2.2 g L−1 in 20 L fermentation. The combined process enables conversion of saccharified IL-pretreated biomass directly to advanced biofuels with no separations or washing, minimal additions to facilitate fermentation, no loss of performance due to IL toxicity, and simplified fuel recovery via phase separation. This study is the first to demonstrate a separation-free IL based process for conversion of biomass to an advanced biofuel and is the first to demonstrate full consumption of glucose, xylose, acetate, and lactic acid in the presence of [Ch][Lys].

Graphical abstract: Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels

Back to tab navigation

Publication details

The article was received on 13 Feb 2018, accepted on 29 Apr 2018 and first published on 01 Jun 2018


Article type: Paper
DOI: 10.1039/C8GC00518D
Green Chem., 2018,20, 2870-2879
  • Open access: Creative Commons BY license
  •   Request permissions

    Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels

    E. Sundstrom, J. Yaegashi, J. Yan, F. Masson, G. Papa, A. Rodriguez, M. Mirsiaghi, L. Liang, Q. He, D. Tanjore, T. R. Pray, S. Singh, B. Simmons, N. Sun, J. Magnuson and J. Gladden, Green Chem., 2018, 20, 2870
    DOI: 10.1039/C8GC00518D

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements