Issue 14, 2017

Theoretical study on the self-assembly of 1,3,5-triethynylbenzene on Si(100)2 × 1 and in situ polymerization via reaction with CO to fabricate a single surface-grafted polymer

Abstract

Based on density functional theory (DFT) calculations, we studied a two-step surface reaction for fabricating conductive molecular wires on hydrogen-terminated Si(100)2 × 1 surfaces. The first step is the self-assembled growth of 1,3,5-triethynylbenzene (TEB) molecules and formation of aligned molecular arrays on a H–Si(100)2 × 1 surface, and the second step is the in situ polymerization of the adsorbed molecules with CO via formal [2 + 2 + 1] cycloaddition reactions to produce a surface-grafted molecular wire, which is chemically bonded to the Si surface and electronically interlinked. The newly formed polymer/Si(100)2 × 1 structure is semiconducting and can be tuned to be conductive by electron doping; in this structure the molecular wires are the sole conducting channels and the Si substrate retains its semiconducting characteristics. Such unique properties make these surface-grafted molecular wires or polymers potential candidates in molecular electronics.

Graphical abstract: Theoretical study on the self-assembly of 1,3,5-triethynylbenzene on Si(100)2 × 1 and in situ polymerization via reaction with CO to fabricate a single surface-grafted polymer

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2017
Accepted
13 Mar 2017
First published
14 Mar 2017

J. Mater. Chem. C, 2017,5, 3585-3591

Theoretical study on the self-assembly of 1,3,5-triethynylbenzene on Si(100)2 × 1 and in situ polymerization via reaction with CO to fabricate a single surface-grafted polymer

X. Yao, J. Wang, G. Wu, S. S. Goh, H. Zhu and S. Yang, J. Mater. Chem. C, 2017, 5, 3585 DOI: 10.1039/C7TC00678K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements