Femtosecond-laser direct writing for spatially localized synthesis of PPV
Abstract
Poly(p-phenylenevinylene), or PPV, is a polymer of great technological relevance due to its electroluminescence properties, which have been exploited in organic light emitting diodes, flexible displays and other optoelectronic devices. Although PPV is a material of foremost importance for many applications, its synthesis on the nano/microscale cannot be achieved through the standard method that uses heating of a precursor polymer. This paper shows how direct laser writing with femtosecond pulses can be employed for the synthesis of PPV in pre-determined regions, allowing a novel approach towards the precise fabrication of complex polymeric microcircuits. The physical-chemical phenomena involved in the conversion of the precursor into PPV are shown to be related to a two-photon induced thermal process, which is confined to the focal volume, resulting in the controlled synthesis of PPV.