Issue 3, 2017

Mesoscale simulation of phoretically osmotic boundary conditions

Abstract

Boundary walls can drive the tangential flow of fluids by phoretic osmosis when exposed to a gradient field, including chemical, thermal or electric potential gradient. At the microscale, such boundary driving mechanisms become quite pronounced. Here, we propose a mesoscale strategy to simulate the phoretically osmotic boundaries, in which the microscopic fluid–wall interactions are coarse-grained into the bounce-back or specular reflection, and the phoretically osmotic force is generated by selectively reversing the tangential velocity of specific fluid particles near the boundary wall. With this scheme, the phoretically osmotic boundary can be realized with a minimal modification to the widely used mesoscopic no-slip/slip hydrodynamic boundary condition. Its implementation is quite efficient and the resulting phoretically osmotic flow is flexibly tunable. Its validity is verified by performing extensive mesoscale simulations for both the diffusioosmotic and thermoosmotic boundaries. In particular, we use the proposed scheme to investigate fluid transport driven by the phoretic osmosis in microfluidic systems and the effects of the diffusioosmosis on the dynamics of active catalytic colloidal particles. Our work thus offers new possibilities to study the phoretically osmotic effect in active complex fluids and microfluidic systems by simulation, where the gradient fields are ubiquitous.

Graphical abstract: Mesoscale simulation of phoretically osmotic boundary conditions

Article information

Article type
Paper
Submitted
08 Nov 2016
Accepted
05 Dec 2016
First published
05 Dec 2016

Soft Matter, 2017,13, 647-657

Mesoscale simulation of phoretically osmotic boundary conditions

M. Yang, R. Liu, F. Ye and K. Chen, Soft Matter, 2017, 13, 647 DOI: 10.1039/C6SM02516A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements