Issue 13, 2017

3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction

Abstract

Here we report a 3D printable polymer that retains uniform mechanical strength after printing and can be used with a conventional fused filament fabrication (FFF) printer. To achieve this, a synthetic polymer containing dynamic Diels–Alder functionality was blended with commercially available polylactic acid (PLA). This new polymer contains cross-links that are reversible at the temperatures typically used for FFF 3D printers. By increasing the cross-link density of the polymer system, we were able to dramatically improve both ultimate strength and toughness along the interfilament junctions of the printed material up to ∼290% and ∼1150% respectively. The final achieved ultimate strength and toughness values for the optimized system are isotropic within error along the three representative print directions X, Y, and Z. Self-healing studies on the Z print direction of the optimized blend showed a 77% recovery of the ultimate strength vs. control PLA having only a 6% recovery, further proving the advanced interfilamentous adhesion via the fmDA dynamics.

Graphical abstract: 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2017
Accepted
14 Mar 2017
First published
15 Mar 2017

Polym. Chem., 2017,8, 2087-2092

3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction

G. A. Appuhamillage, J. C. Reagan, S. Khorsandi, J. R. Davidson, W. Voit and R. A. Smaldone, Polym. Chem., 2017, 8, 2087 DOI: 10.1039/C7PY00310B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements