Improved cycling stability of MoS2-coated carbon nanotubes on graphene foam as flexible anodes for lithium-ion batteries†
Abstract
Achieving appropriate cycling stability for metal sulfides used as anodes in Li-ion batteries remains highly challenging because of structural collapse or low conductivity. Herein, a novel composite was designed as an anode material for Li-ion batteries. This unique architecture has the advantages of a large interface area, numerous channels for Li+ and electron transport, and a porous structure that facilitates electrolyte infiltration and buffers the volume expansion. As expected, this composite exhibits good cycling stability, high reversible capacity, and high rate capability, delivering a high discharge capacity of 1511.6 mA h g−1 and a high first columbic efficiency of 83.27%. The reversible capacities of graphitic-carbon network material (GCNM) electrodes are 1112 mA h g−1 at a current density of 0.1 A g−1 after 100 cycles, and they show superior rate capabilities. This GCNM composite demonstrates great potential for applications in power sources for flexible and lightweight electronic devices.

Please wait while we load your content...