Issue 6, 2017

Fluorescent H-aggregates of an asymmetrically substituted mono-amino Zn(ii) phthalocyanine

Abstract

The photophysical properties of a newly synthesized unsymmetrically substituted zinc phthalocyanine derivative (1) bearing in its peripheral positions six n-hexylsulfanyl substituents and one amino-terminated n-hexylsulfanyl substituent were investigated. This mono-amino phthalocyanine exhibited a high tendency to form H-type aggregates in all of the investigated solvents: dichloromethane (DCM), tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO). Several species of H-aggregates were present together in relatively broad concentration ranges in THF and DCM, whereas in DMSO they were observed separately depending on the concentration used. Despite the widely accepted non-emissive character of H-type dimers, the H-type aggregates of phthalocyanine 1 were highly emissive in all solvents: the fluorescence quantum yield in DMSO for the n-aggregate is equal to 0.05, whereas for the (n + 1)-aggregate it is 0.11. Upon (n + 1)-aggregation, the fluorescence lifetime of the n-aggregate increased from ca. 2.5 ns to 3.3 ns. Based on these results, the radiative lifetimes of both species were computed: 48 ns for the n-aggregate and 29 ns for the (n + 1)-aggregate. The determined oscillator strengths for the n-aggregate and the (n + 1)-aggregate in DMSO were 0.04 and 0.12, respectively. The observed emission of the H-type (n + 1)-aggregate was assigned to the radiative transition from the upper exciton state to the ground state, which could be rationalized by a constant thermal repopulation of the upper exciton state. The experimental findings were supported by theoretical calculations.

Graphical abstract: Fluorescent H-aggregates of an asymmetrically substituted mono-amino Zn(ii) phthalocyanine

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2016
Accepted
03 Jan 2017
First published
23 Jan 2017

Dalton Trans., 2017,46, 1914-1926

Fluorescent H-aggregates of an asymmetrically substituted mono-amino Zn(II) phthalocyanine

M. Bayda, F. Dumoulin, G. L. Hug, J. Koput, R. Gorniak and A. Wojcik, Dalton Trans., 2017, 46, 1914 DOI: 10.1039/C6DT02651F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements