Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

There will be scheduled maintenance work beginning on Saturday 15th June 2019 at 8:30 am through to Sunday 16th June 2019 at 11:30 pm (BST).

During this time our website may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 22, 2017
Previous Article Next Article

Catalyst accessibility to chemical reductants in metal–organic frameworks

Author affiliations

Abstract

A molecular H2-evolving catalyst, [Fe2(cbdt)(CO)6] ([FeFe], cbdt = 3-carboxybenzene-1,2-dithiolate), has been attached covalently to an amino-functionalized MIL-101(Cr) through an amide bond. Chemical reduction experiments reveal that the MOF channels can be clogged by ion pairs that are formed between the oxidized reductant and the reduced catalyst. This effect is lessened in MIL-101-NH-[FeFe] with lower [FeFe] loadings. On longer timescales, it is shown that large proportions of the [FeFe] catalysts within the MOF engage in photochemical hydrogen production and the amount of produced hydrogen is proportional to the catalyst loading.

Graphical abstract: Catalyst accessibility to chemical reductants in metal–organic frameworks

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 Jan 2017, accepted on 23 Feb 2017 and first published on 23 Feb 2017


Article type: Communication
DOI: 10.1039/C7CC00022G
Chem. Commun., 2017,53, 3257-3260
  • Open access: Creative Commons BY license
  •   Request permissions

    Catalyst accessibility to chemical reductants in metal–organic frameworks

    S. Roy, V. Pascanu, S. Pullen, G. González Miera, B. Martín-Matute and S. Ott, Chem. Commun., 2017, 53, 3257
    DOI: 10.1039/C7CC00022G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements