Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2017

Discovery of decamidine as a new and potent PRMT1 inhibitor

Author affiliations

Abstract

Protein arginine methyltransferase 1 (PRMT1) is a key player for the dynamic regulation of arginine methylation. Its dysregulation and aberrant expression are implicated in various pathological conditions, and a plethora of evidence suggests that PRMT1 inhibition is of significant therapeutic value. Herein, we reported the modification of a series of diamidine compounds with varied lengths in the middle alkyl linker for PRMT1 inhibition. Decamidine (2j), which possesses the longest linker in the series, displayed 2- and 4-fold increase in PRMT1 inhibition (IC50 = 13 μM), compared with furamidine and stilbamidine. The inhibitory activity toward PRMT1 was validated by secondary orthogonal assays. Docking studies showed that the increased activity is due to the extra interaction of the amidine group with the SAM binding pocket, which is absent when the linker is not long enough. These results provide structural insights into developing the amidine type of PRMT1 inhibitors.

Graphical abstract: Discovery of decamidine as a new and potent PRMT1 inhibitor

Supplementary files

Article information


Submitted
13 Oct 2016
Accepted
30 Dec 2016
First published
03 Jan 2017

Med. Chem. Commun., 2017,8, 440-444
Article type
Research Article

Discovery of decamidine as a new and potent PRMT1 inhibitor

J. Zhang, K. Qian, C. Yan, M. He, B. A. Jassim, I. Ivanov and Y. G. Zheng, Med. Chem. Commun., 2017, 8, 440 DOI: 10.1039/C6MD00573J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Search articles by author

Spotlight

Advertisements