A study of Ce3+ to Mn2+ energy transfer in high transmission glasses using time-resolved spectroscopy
Abstract
This work investigates the energy transfer from Ce3+ to Mn2+ in high transmission glass (HTG) doped with CeO2 and MnO through time-resolved spectroscopy to transform the solar spectrum into a more efficient red-enhanced spectrum for traditional Si-based solar cells. We show that both Mn3+ and Mn2+ and Ce3+ and Ce4+ centres are formed in HTG through their absorption and emission/excitation spectra. Interestingly, Ce3+ excitation at 320 nm yields both Ce3+ (400 nm) and Mn2+ (530 nm) emissions for doping concentrations of 0.1–1% Ce3+ and 0.1% Mn2+. The energy transfer process in HTG is noteworthy since it enhances the capability for blue-to-red light transformation, which is important for a concentrator in photovoltaic applications. This work analyses the non-radiative vs. radiative Ce3+ → Mn2+ energy transfer process in this optically enriched HTG. In the explored doping range we show that energy transfer is purely radiative.