Journal of Materials Chemistry C

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this *Accepted Manuscript* with the edited and formatted *Advance Article* as soon as it is available.

You can find more information about *Accepted Manuscripts* in the [Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](http://www.rsc.org/help/termsconditions.asp) and the Ethical quidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/materialsC

Study of Ce3+ to Mn2+ energy transfer in highly transmission glasses by time-resolved spectroscopy

Susana Gómez-Salces^{a,}*, Jose Antonio Barreda-Argüeso^a, Rafael Valiente^b, and Fernando Rodríguez^a *a MALTA-CONSOLIDER-Team, DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain ^bMALTA-CONSOLIDER-Team, Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Cantabria, IDIVAL, 39005 Santander, Spain*

* Author for correspondence. E-mail: susana.gomez@unican.es

ABSTRACT

This work investigates the energy transfer from Ce^{3+} to Mn²⁺ in highly transmission glass (HTG) doped with $CeO₂$ and MnO through time-resolved spectroscopy to transform the solar spectrum into a more efficient red-enhanced spectrum for traditional Si-based solar cells. We show that both Mn³⁺ and Mn²⁺ and Ce^{3+} and Ce^{4+} centres are formed in HTG through their absorption and emission/excitation spectra. Interestingly, Ce³⁺ excitation at 320 nm yields both Ce³⁺ (400 nm) and Mn²⁺ (530 nm) emissions for doping concentrations of $0.1-1\%$ Ce³⁺ and 0.1% Mn²⁺. The energy transfer process in HTG is noteworthy since it enhances the capability for blue-to-red light transformation, what is important for concentrator in photovoltaic applications. This work analyses the non-radiative vs. radiative Ce³⁺ \rightarrow Mn²⁺ energy transfer process in this optically enriched HTG. In the explored doping range we show that energy transfer is purely radiative.

Keywords: glasses; Ce^{3t} ; Mn²⁺; Mn³⁺, photoluminescence; energy transfer; time-resolved spectroscopy, solar concentrators.

INTRODUCTION

Energy transfer (ET) among impurity ions in solids is the key for a considerable amount of studies related to the efficient use of energy. ET is important for applications in many fields such as communication devices,¹⁻⁴ phosphors,⁵⁻⁶ solid state lasers⁷⁻⁹ and in photovoltaic energy conversion. There is an increasing interest to investigate optically activated high transmission glasses (HTG) due to their capability as protector shields and solar spectrum transformers and concentrators for photovoltaic applications in Si solar cells.¹⁰⁻¹⁴ By doping with adequately selected optically active centres, the HTG can transform the incoming photovoltaic-inefficient UV and IR solar radiation into visible (VIS) light, via downconversion (one UV photon \rightarrow two VIS photon), upconversion (two IR photon \rightarrow one VIS photon) or by large Stokes-shifted photoluminescence (PL) processes.¹¹⁻¹⁷ Depending on whether the selected dopants introduced in HTG are capable to efficiently absorb UV or IR radiation into photovoltaic useful VIS light, those enriched HTG can significantly improve the efficiency of the solar cells.

The spectroscopic properties of Ce³⁺ ions in different glasses are well known.¹⁸⁻²⁰ Ce³⁺ has a 4f¹ ground state configuration, and shows very intense and efficient broadband luminescence upon excitation in the parity-allowed electric-dipole $4f \rightarrow 5d$ transition.²¹ Because of their favourable spectroscopic properties and the ability to incorporate Ce^{3+} into different host materials, cerium activated materials, particularly, in glasses, have received considerable attention.¹⁸⁻²⁴

The incorporation of MnO in fussed glasses, two valence states, Mn²⁺ and Mn³⁺, are formed, the Mn²⁺/Mn³⁺ ratio decreasing with the glass basicity.²⁴⁻²⁵ Two structured Mn²⁺ (3d⁵ electronic configuration) absorption bands results in 354 and 416 nm had been identified in sodium silicate glass.²⁶ Excitation into these bands gave rise to visible emission (520 nm) associated with the spin-forbidden *d*–*d* transition ${}^4T_1 \rightarrow {}^6A_1$ of Mn²⁺.^{27,28} On the other hand, Mn³⁺ (3d⁴) did not show any photoluminescence and had an intense absorption band around 500 nm in binary silicate glasses strongly overlapping with the Mn²⁺ emission.²⁶ The intense Mn³⁺ broadband absorption at 500 nm corresponded to the parent octahedral 5 E \rightarrow 5 T₂ transition, whose levels were usually split by the low-symmetry crystal field acting at Mn³⁺ site as a consequence of either the low symmetry host site or the Jahn-Teller effect.²⁹ We co-dope our glass with CeO₂ to explore if Ce acts as reductor to favour Mn²⁺ formation over Mn³⁺, or by contrast as an oxidant, favouring Mn³⁺ formation over Mn²⁺ through the two-way redox reaction: Ce³⁺ + Mn³⁺ \leftrightarrow $Ce^{4+} + Mn^{2+.26}$

In this work, we investigate the radiative vs. non-radiative nature of the Ce³⁺ to Mn²⁺ ET in CeO₂-MnO co-doped HTG through time-resolved spectroscopy. This doping intends to enhance the HTG capability for blue-to-red light transformation regarding photovoltaic applications. It must be noted that the interpretation of ET in glasses may be complicated by inhomogeneous band broadening. There are studies that showed the emission of Ce³⁺ in Ce³⁺/Mn²⁺ co-doped phosphate glasses, decreased with increasing Mn²⁺ concentration.²⁸ The observation of Mn²⁺ emission at 594 nm upon excitation into the $4f \rightarrow 5d$ transition of Ce³⁺ at 307 nm suggested that such Mn²⁺ PL could be due to ET from Ce³⁺ to Mn²⁺. In this respect, Ce³⁺ \rightarrow Mn²⁺ ET has been observed in Zn₂SiO₄ and SrAl₂O₃ as key mechanism to get white efficient PL phosphors.30,31,32 However non-radiative ET, which is activated by the electric dipolequadrupole mechanism, 33 involves a critical average distance between Ce³⁺ and Mn²⁺ of 8.3 Å. Therefore, activation of this mechanism requires relatively high doping concentrations (approx. 30 weight %; much greater than 1 weight %). This work investigates whether Mn^{2+} PL under excitation into Ce^{3+} band at 320 nm in co-doped HTG, is induced by non-radiative ET from Ce^{3+} to Mn²⁺, or it rises by direct excitation into Mn^{2+} crystal-field excited states from Ce³⁺ luminescence (radiative ET).

EXPERIMENTAL

High transmitting glass from GUARDIAN Sunguard Company was used. Recycled samples were ground glass as a host material and were mixed with different amounts of $CeO₂$ and MnO (Aldrich 97%). The mixture was deposited on alumina moulds with a subsequent thermal treatment at 1100°C for 14 hours. It ensures a complete homogeneous incorporation of dopants into the host glass and prevent bubble formation. After thermal treatment, the glasses were annealed at 650 ºC to avoid crystallization by controlled cooling to ensure fully formation of amorphous glass. The samples were polished for spectroscopic studies. The host glass composition from x-ray fluorescence analysis is: $SiO₂$ (69.1 %wt), CaO (12.2 %wt), Na₂O (14.7 %wt), Al₂O₃ (2.7 %wt) with some traces of MgO, Fe₂O₃, K₂O and SO₃ (all traces are below 0.1 %wt). The density and refractive index (520 nm) of HTG are ρ = 2.5 g/cm³ and n = 1.52, respectively. X-ray fluorescence analysis gives: $CeO₂$ (0.93%), MnO (0.09%) concentrations for

CeMnHTG. These results indicate that, within the experimental uncertainty, the nominal and actual concentration are the same. Table 1 summarizes the synthesized HTG prepared in this work. It should be noted that in this study CeO₂ concentrations is kept bellow 1% in weight in order to avoid as much as possible the formation of oxygen trapped inside of glass occurring at higher concentration and reducing dramatically the optical quality of the glass.

The main advantage of working with recycled glass is the reduction of the melting temperature (1100°C) with respect to raw materials (1500°C). The glass viscosity at 1100°C is appropriated to homogeneously dissolve dopants in the bulk material. In any case, the viscosity is high enough to keep the melt in the mould without any leak.

The optical absorption spectra were taken with a CARY 6000*i* in the 200–1800 nm range and a PERKIN ELMER Lambda 9 in the 200–3200 nm spectral range. The spectra represent the average over four different sample orientations in order to minimize polarization effects and perpendicular misorientation of samples. This method, allows us an instrumental correction of the absorbance jumps attained by changing the photodetector from photomultiplier to IR detector (InGaAs and PbS, respectively).^{34,35} This procedure permits measuring transmittances of 91.0% with accuracy better than 0.1%.

For photoluminescence measurements, the excitation, emission and time-resolved luminescence spectra were obtained with a FLSP920 (Edinburgh Inst.) spectrometer. All spectra were recorded a room temperature and corrected for the wavelength system response. The x-ray fluorescence analysis was obtained by means of an ARL ADVANT'XP (Thermo Scientific).

RESULTS AND DISCUSSIONS

Figure 1 shows the UV-Vis optical absorption spectra of HTG doped with different $CeO₂$ and MnO concentrations of (Table 1). The spectrum of undoped HTG is also shown to emphasize the Ce³⁺ and Mn³⁺ contribution to the spectra. The absorption band, appearing as a shoulder at 3.85 eV (322 nm) in CeHTG and CeMnHTG, corresponds to parity-allowed electric-dipole transition $4f \rightarrow 5d$ of Ce³⁺.²⁷ A weak absorption band around 2.50 eV (500 nm) in MnHTG and CeMnHTG is also observed (inset of Figure 1). It corresponds to the ${}^5E \rightarrow {}^5T_2$ intraconfigurational transition of Mn³⁺ (3*d*⁴) according to assignments given elsewhere.^{36,37} The strong asymmetry of the absorption band between 1.5 and 2.5 eV reveals several absorption components, which are probably associated to the splitting of the Mn³⁺ 3*d*(e_a +*t*_{2*a*})</sub> energy levels, due to the strong low-symmetry crystal-field distortion produced by either the Jahn-Teller (JT) effect in sixfold coordination, or a smaller coordination number, e.g. N=5.²⁹ It must be noted that the absorption background increases in the visible region in CeMnHTG with respect to MnHTG thus indicating an increase of the glass basicity and of the $[Mn^{3+}]/[Mn^{2+}]$ ratio; *i.e.* CeO₂ acts as an oxidant for MnO in the redox reaction attained in CeMnHTG at high temperature.

Figure 2 shows the luminescence spectra of HTG doped with CeO₂ (CeHTG), MnO (MnHTG) and CeO₂-MnO (CeMnHTG) with concentrations given in Table 1. The emission/excitation spectra of CeHTG and MnHTG are shown in Figures 2A and 2B, respectively, while and the emission/excitation spectra of the doubly doped CeMnHTG in Figure 2C. Excitation spectra Figure 2B allow us to resolve Mn²⁺ bands despite the low Mn²⁺ concentration, which are not observed in the UV-VIS spectra (Figure 1) due to weak intensity of the Mn²⁺ bands. For singly doped Ce³⁺HTG, there is a strong emission at 3.10 eV (400 nm) under UV excitation at 3.87 eV (320nm) with a long tail decreasing in the 2 -2.5 eV range (500 – 600 nm). This emission is ascribed to the parity-allowed transition of the lowest component of the 5*d* state to ${}^2F_{5/2}$ and ${}^2F_{7/2}$ levels of Ce³⁺ ions.²¹ The emission is associated with a strong excitation band at 3.7 eV (335 nm) corresponding to $4f \rightarrow 5d$ transition of Ce³⁺. For Mn²⁺ singly doped HTG (Figure 2B), an intense emission band at 2.34 eV (530 nm) with a shoulder at 1.9 eV (650nm) is observed. The corresponding excitation spectra are also shown in Figure 2B. According to band assignment given elsewhere, $27,28$ the band shape and transition energy of these bands at 2.77, 2.89, 2.96, 3.32, 3.50 and 3.71 eV can be unambiguously assigned to tetrahedrally coordinated Mn²⁺. Within T_d symmetry these bands correspond to Mn²⁺ d-d transitions from the ⁶A₁(S) ground state to mainly ⁴T₁(G), ⁴T₂(G), ⁴A₁⁴E(G), ⁴T₂(D), ${}^{4}E(D)$ and ${}^{4}T_{1}(P)$ excited states, respectively.³⁸ The crystal-field parameters obtained by fitting the experimental transition energies to the calculated energies for d^5 electronic configuration are given together with the Tanabe-Sugano diagram in Figure 3. Due to the strong emission of Ce^{3+} in CeMnHTG (Figure 2C), the emission of Mn²⁺ (around 2.34 eV) is masked in this spectrum.²⁸ However, the superimposed weak emission intensity to the Ce^{3+} band emission in the 2–2.5 eV range can probably

Journal of Materials Chemistry C Accepted Manuscript Journal of Materials Chemistry C Accepted Manuscript

include the contribution from Mn^{2+} emission. In fact, the excitation spectrum associated with the emission at 2.34 eV (530 nm) shows clearly Mn^{2+} excitation peaks. Indeed, the excitation spectrum, apart from the broad intense band at 3.7 eV (335 nm) corresponding to $4f \rightarrow 5d$ transition of Ce³⁺, which is the major luminescence feature, some additional less-intense excitation bands are observed between 2.75–3.00 eV (450–410 nm), which coincides with the Mn^{2+} excitation peaks of Figure 2B. Interestingly, there is a strong overlap between Ce^{3+} emission and Mn^{2+} excitation (Figure 2C) that according to Förster theory fulfills ideal resonance conditions for an efficient ET between Ce³⁺ (donor) and Mn²⁺ (acceptor).^{39,40} The strong Ce³⁺ band at 3.7eV in the excitation spectrum which is associated with the green emission at 2.34 eV (530 nm), clearly indicates that ET from Ce^{3+} to Mn²⁺ is likely. In order to elucidate the radiative vs. non-radiative nature of the Ce³⁺ to Mn²⁺ ET, we have performed time-resolved emission and excitation spectroscopy study.

Time-resolved spectroscopy allows us to unveil the presence of different Mn^{2+} centers in HTG as well as unambiguously demonstrates the existence of Ce³⁺ \rightarrow Mn²⁺ ET. Figure 4 shows the luminescence intensity decay curves $I(t)$ corresponding to the green (2.34 eV) and red (1.91 eV) emissions of Mn²⁺. Two different average exponential decays for *I*(*t*) are observed with associates lifetimes of 9.1 and 13.4 ms for green and red emissions, respectively. It means that not only inhomogeneously distributed fourfold and/or fivefold coordinated centres are observed, but also other probably six-fold coordinated Mn²⁺ centres, which are subjected to higher crystal-field strengths than T_d or C_{4v} centres. Hence, red and green PL emissions are attained at the same time. Figures 2 and 4 clearly demonstrate that the short lived green emission corresponds to the broad emission centred at 2.34 eV (530 nm), the excitation of which is characteristic of T_d (or nearly T_d) centres. Analogously, the long lived red emission corresponds to a weaker broad emission band peaking at 1.91 eV (650 nm), whose excitation spectrum, rather than T_d , is probably related to a nearly octahedral coordination. This assignment is based on the shift of the first transition energy towards lower energies, unveiling a higher crystal-field splitting parameter ([∆] > 0.7 eV) than that measured for T_d Mn²⁺ (Δ = 0.42 eV), as expected for a nearly octahedral coordination.

Figure 5 shows the time-resolved emission (A) and excitation (B) spectra of MnHTG and CeMnHTG. Both spectra are taken under pulsed excitation with delay times longer than 200 µs to permit a complete deexcitation of Ce³⁺ (τ = 1–5 ns) before detection.^{23,28,39} With this procedure we detect emissions whose lifetimes are longer than about 200 µs as for example Mn²⁺ (τ = 10 ms) or intrinsic defects in the glass matrix.^{41,42} Other shorter-lived emissions like Ce³⁺ do not contribute to luminescence spectra. The timeresolved emission spectra of CeMnHTG under selective excitation into the Ce³⁺ band (3.87 eV $-$ 320 nm) consists mainly of Mn²⁺ green emission at 2.34 eV (530 nm) whereas, the intense Ce³⁺ emission at 3.10 eV (400 nm) is completely absent. It must be noted that excitation at 3.87 eV is unable to excite Mn²⁺ in MnHTG (Figures 3 and 5B), but induces Mn²⁺ photoluminescence in CeMnHTG (Figure 5A), thus evidencing Ce³⁺→Mn²⁺ ET in this system. A residual emission band at 3.00 eV (413 nm), which is also observed in the undoped HTG (Figure 5A), is probably associated with defects of oxygen deficiencies in the glasses.^{41,42}

The time-resolved excitation spectra of Figure 5B reveal a radiative ET from Ce³⁺ to Mn²⁺ while the nonradiative ET mechanism is completely ruled out in these HTG samples. In order to demonstrate it we must consider that excitation spectroscopy was accomplished using a pulsed Xe lamp by detecting green emission at 2.34 eV (530 nm) with delay and gate times of 200 µs and 40 ms, respectively. Under such detection conditions, the intense Ce³⁺ excitation band observed at 3.87 eV (320 nm) in the cw excitation spectra (Figure 2C), is notably reduced by an order of magnitude with respect to the Mn²⁺ excitation intensity in the time-resolved spectra. In fact, the excitation spectrum fully corresponds to T_d Mn²⁺ peaks (Figures 4 and 5B) in MnHTG, while the excitation of CeMnHTG shows an additional weak excitation broad band at 3.7 eV (335 nm) corresponding to Ce^{3+} . The difference between time-resolved excitation spectra CeMnHTG and MnHTG shown in Figure 5B confirms it. This result is noteworthy since it means that the intense Ce³⁺ band observed in the cw excitation spectrum detecting at 2.34 eV (Figure 2C) does not entirely correspond to Mn²⁺ emission but also to Ce³⁺ emission, particularly, in the low energy tail component of the 3.10 eV emission band. Therefore, the Ce³⁺ to Mn²⁺ excitation intensity ratio, $I_{3.7\text{eV}}(Ce^{3+})$ / $I_{2.9\text{eV}}(Mn^{2+})$, changes from 5 under cw excitation to 0.44 in time-resolved excitation. So the Ce³⁺ relative intensity decreases by a factor 11 using a delay time of 200 µs. Such an intensity reduction factor is consistent with a radiative ET mechanism.

Indeed, this reduction factor can be accounted for on the basis of Mn²⁺ emission induced directly by exciting Mn²⁺ centres with light coming from Ce³⁺ emission (direct radiative ET). Figure 6 shows Ce³⁺ emission band under excitation at 3.87 eV (320 nm) together with the Mn²⁺ excitation spectrum obtained in MnHTG to illustrate the resonance conditions for Ce^{3+} to Mn²⁺ ET. From these spectra the fraction of Ce^{3+} emitted photons, which are absorbed by Mn^{2+} in a 1 mm thickness CeMnHTG sample, is 2×10^{-4} *I₀* with *I₀* being the Ce³⁺ emission intensity at the band maximum (3.10 eV). Therefore, the number of Mn²⁺ emitted photons by direct absorption of the Ce³⁺ luminescence (radiative ET) is 2×10^{-4} *I*₀. However, it must be noted that the Ce³⁺ excitation intensity of Figure 2C corresponds only to a small fraction of the total Ce³⁺ emission intensity: the excitation intensity is obtained by light detection at 530 nm using spectral slits of 2 nm. It means the excitation intensity at the band maximum at 3.7 eV (335 nm) corresponds to a fraction of 1/(40×12.5) = 2×10⁻³ of the total Ce³⁺ emission intensity. Therefore the ratio of Ce³⁺/Mn²⁺ emitted photons (referred to the Mn²⁺ peak intensity at 2.9 eV) by radiative ET is: 2×10^{-3} *I₀* / 2×10^{-4} *I₀* = 10, which is in fair agreement with the reduction factor of 11 obtained by comparing the cw and time-resolved excitation spectra of CeMnHTG of Figures 2C and 5B. This result points out that non-radiative Ce3+ to Mn2+ ET in CeMnHTG below the saturation concentration

of dopants (1% for Ce and 0.1% for Mn) is unlikely. In this concentration range, ET is mainly achieved through a radiative mechanism, the non-radiative ET being inefficient. Actually, the non-radiative ET would be efficient and dominant ET mechanism for Ce and Mn concentrations of about 30%. In fact, the non-radiative ET probability is expected to be very small for detection since the average Ce – Mn distance in the more doped HTG (1%Ce – 1%Mn) is about 25 Å, which is about 3 times longer than the critical distance for non-radiative ET: $R_0 = 8.3 \text{ Å}^{33}$ In conclusion, there exist a radiative ET from Ce³⁺ to Mn^{2+} in doubly Ce, Mn-doped HTG allowing a partial transformation of the Ce³⁺ UV emission into visible (530 nm) emission from Mn^{2+} .

CONCLUSIONS

By means of optical absorption and time-resolved photoluminescence, we have identified two valence states of manganese: Mn²⁺ and Mn³⁺ in HTG doped with CeO₂ and MnO. We demonstrate that Ce³⁺ and Mn^{2+} fulfill ideal conditions for energy transfer since the corresponding emission and excitation spectra largely overlap. We show that there exist and Ce^{3+} to Mn²⁺ ET in CeMnHTG, although for the explored doping concentrations (0.1–1 weight %) the ET mechanism is purely radiative. A salient result emerging from this work is that an efficient solar transformer HTG based on the Ce and Mn should be achieved by incorporating local concentrations of Ce and Mn of about too high 30% as a way of activating the nonradiative ET mechanism, but keeping the transmission performances of the glass in the VIS-NIR. An efficient method to get such high dopant concentration locally can be achieved by embedding optically active Ce– and Mn–doped oxide nanoparticles with concentrations of about 30% during the glass fabrication process. This way will provide more efficient non-radiative HTG Ce-Mn ET processes, thus enhancing the solar spectrum transformation capabilities. Investigations with this target are currently in progress.

ACKNOWLEDGEMENTS

This work has been done within a collaborative Research in photovoltaic glasses with the R & D Centre, Saint-Gobain, Avilés (Spain). We thank financial support from the Spanish Ministerio of Economía y Competitividad (Project No. IPT-2011-1868-920000).

REFERENCE

1 F. Lahoz, E. Daran, G. Lifante, T. Balaji and A. Muñoz-Yague, *Appl. Phys. Lett*., 1999, **74**, 1060.

- 2 P.S. Golding, S.D. Jackson, T. King and M. Pollnau, *Phys. Rev. B*, 2000, **62**, 856.
- 3 C. Strohhofer, P.G. Kik and A. Polman, J*. Appl. Phys*., 2000, **88**, 4486.
- 4 S.H. Park, D.C. Lee, J. Heo and D.W. Shin, *J. Appl. Phys*., 2002, **91**, 9072.
- 5 D. Jia, R.S. Meltzer, W.M. Yen, W. Jia and X. Wang, *Appl. Phys. Letter* ,2002, **80**, 1535.

6 E.J. Bosze, G.A. Hirata, L.E. Shea-ohwer and J. McKittrick, *J. Lumin*., 2003, **104**, 47.

7 A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorgé and A. M. Tkachuk., *Phys.Rev. B*, 2000, **61**, 5280.

8 J.T. Vega-Duran, L.A. Diaz-Torres, M.A. Meneses-Nava, J.L. Maldonado-Rivera and O. Barbosa-Garcia, *J. Phys. D: Appl. Phys*., 2001, **34**, 3203.

9 G.V. Vázquez, R. Valiente, S. Gómez-Salces, E. Flores-Romero, J. Rickards and R. Trejo-Luna, *Opt. Laser Technol*., 2016, **79**, 132.

10 S. Gómez, I. Urra, R. Valiente and F. Rodríguez, *Sol. Energy Mater. Sol. Cells*, 2011, **95**, 2018.

11 B.S. Richards, *Sol. Energy Mater. Sol. Cells*, 2006, **90**, 1189.

12 C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo and I. Tobias, *Sol. Energy Mater. Sol. Cells*, 2007, **91**, 238.

13 C. R. Ronda, *J. Alloys Compd*., 1995, **225**, 534.

14 M. Green, Springer, Berlin, 2003.

15 M. A. García, E. Borsella, S. E. Paje, J. Llopis, M. A. Villegas and R. Polloni, *J. Lumin*., 2001, **93**, 253.

16 M. Nogami, T. Yamazaki and Y. Abe," *J. Lumin*., 1998, **78**, 63.

17 Y. K. Sharma, S. S. L. Surana, R. K. Singh and Indian *J. Pure Appl. Phys*., 2008, **46**, 239.

18 G. C. Kim, S. I. Mho and H. L. Park, *J. Mater. Sci. Lett*., 1995, **14**, 805.

19 D. Curie, Luminescence in crystals, Methuen and Co Ltd, London, 1963.

20 J. S. Stroud, *J. Chem. Phys*., 1961, **35**, 844.

21 S. E. Paje, M. A. García, M. A. Villegas and J. Llopis, *Opt. Materials*, 2001, **17**, 459.

22 M. J. Weber, M. Bliss, R. A. Craig and D. S. Sunberg, *Radiat. Eff. Defects Solids*, 1995, **134**, 23.

23 J. Bei, G. Qian, X. Liang, S. Yuan, Y. Yang and G. Chen*, Mater. Res. Bull*., 2007, **42**, 1195.

24 S.P. Singh, Aman and A. Tarafder, *Bull. Mater. Sci*., 2004, **27**, 281.

25 W. Thiemsorn, K. Keowkamnerd, S. Phanichphant, P. Suwannathada and H. Hessenkemper, *Glass Phys. and Chem*., 2008, **34**, 19.

26 J. M. Fernández, "*El vidrio*" 2º edition CSIC, Madrid, 1991.

27 C. F. Song, M. K. Lü, P. Yang, F. Gu, D. Xu and D. R. Yuan, *J. Sol-Gel Sci. Technol*, 2003, **28**, 193.

28 P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan and M. K. R. Warrier, *J. Phys. Chem. Solids*, 2003, **64**, 841.

29 M-N. Sanz-Ortiz and F. Rodríguez, *J. Chem. Phys*., 2009, **131**, 124512.

30 R. Ye, H. Mab, C. Zhanga, Y. Gao, Y. Huaa, D. Denga, P. Liub and S. Xu, *J Alloys Compd*, 2013, **566**, 73.

31 X. Xu, Y. Wang, X. Yu, Y. Li and Y. Gong, *J. Am. Ceram. Soc.,* 2011, **94**, 160.

32 G. Li, D. Geng, M. Shang,C. Peng, Z. Chenga and J. Lin, J. Mater. Chem., 2011, **21**, 13334.

33 E. Nakazawa and S. Shionoya, *J. Chem. Phys.,* 1967, **47**, 3211.

34 S. Gómez, I. Urra, R. Valiente and F. Rodriguez, *J. Phys.: Condens. Matter*, 2010, **22**, 295505.

35 S. Gomez-Salces, PhD Thesis, University of Cantabria 2012.

36 N. Da, M. Peng, S. Krolikowski and L. Wondraczek, *Opt. Express*, 2010, **18**, 2549.

37 S. Kück, S. Hartung, S. Hurling and K. Petermann, G. Huber, *Phys. Rev. B*, 1998, **57**, 2203.

38 Y. Rodríguez-Lazcano, L. Nataf and F. Rodríguez, *Phys. Rev. B*, 2009, **80**, 085115.

39 Y. Yu, Z. Liu, Y. Sheng, H. Luan, J. Peng, Z. Jiang, H. Li, J. Li and L. Yang, *Opt. Express*, 2011, **19**, 19473. 40 Th. Förster, *Ann. Physik*, 1948, **437**, 55.

41 T. Hayakawa, A. Hiramitsu and M. Nogami, *Appl. Phys. Lett.*, 2003, **82**, 2975.

42 J. Zhou, G. Sun, H. Zhao, X. Pan, Z. Zhang, Y. Fu, Y. Mao and E. Xie, *J. Nanotechnol*., 2015, **6**, 313.

TABLE CAPTION

Table 1. Nominal concentration of CeO₂ and MnO (weight %) for different high-transmission glasses (HTG).

FIGURE CAPTIONS

Figure 1. Room-temperature optical absorption spectra of MnHTG (----), CeHTG (-----), CeMnHTG (·······) and undoped HTG (––––) in the 1.5–4.5 eV range. The inset shows the corresponding absorption of Mn³⁺ in the 1.5–3.0 eV range.

Figure 2. Emission (———) and excitation (– – – – and ·········) spectra under cw excitation of CeHTG (A), MnHTG (B) and CeMnHTG (C). Spectral resolution: $\Delta \lambda$ = 2 nm.

Figure 3. Excitation spectrum of Mn²⁺ of HTG doped with 0.1% MnO (red points) associated with the green emission at 530 nm. The spectrum can be simulated (blue line) as the sum of Gaussian shaped bands (dashed lines) within a *Td* crystal-field splitting of states with transition energy at 2.77, 2.89, 2.96, 3.32, 3.50 and 3.71 eV. The crystal-field parameters derived from the Tanabe-Sugano diagram (d^5) are B = 0.081 eV; *C* = 0.42 eV; [∆] = 0.42 eV. The experimental transition energies with associated bandwidths (red rectangles) and calculated energies are compared in the Tanabe-Sugano diagram shown above the spectrum.

Figure 4. Luminescence time-dependence, *I*(*t*), corresponding to the green emission at 2.34 eV (530nm) and red emission at 1.91 eV (650nm) to Mn²⁺ of MnHTG samples. Lifetimes values correspond to fits of the experimental points to average exponential decay behaviour of *I*(*t*). The fit includes instrumental response due to the pulsed Xe lamp and background correction.

Figure 5. Time-resolved excitation/emission spectra of MnHTG and CeMnHTG. A) Time-resolved emission of CeMnHTG $(- - - - \cdot)$ and undoped HTG $(- - \cdot)$ by excitation at 3.87 eV (320 nm). B) Timeresolved excitation spectra corresponding to the green emission at 2.34 eV (530nm) in CeMnHTG (----and MnHTG $(- - - -)$. The pointed spectrum $(.....)$ correspond to subtraction of time-resolved excitation spectra CeMnHTG and MnHTG. Both excitation and emission spectra were accomplished using a pulsed Xe lamp using delay and times for detection of 200 µs and 40 ms, respectively.

Figure 6. Emission spectrum (--) of CeHTG by excitation at 3.87 eV (320nm) and excitation spectrum $(- - - -)$ of MnHTG. The absorption coefficient scale for Mn²⁺ was obtained from optical absorption measurements in 1 mm-thickness MnHTG sample.

Figure 4.

TABLES

Table1. Nominal concentration of $CeO₂$ and MnO (weight %) for different high-transmission glasses (HTG).

