Fabrication of {010} facet dominant BiTaO4 single-crystal nanoplates for efficient photocatalytic performance†
Abstract
The facets of nano-photocatalysts play an important role in their photocatalytic activity. Here, we prepared {010} facet dominant BiTaO4 single-crystal nanoplates, which can both split water into H2 and decompose organic dyes into non-toxic small molecules. UV-vis DRS, XPS valence band and Mott–Schottky measurements and DFT calculations demonstrated that the up-shift of the conduction band minimum significantly increased the reduction ability of photogenerated electrons, thus leading to highly efficient photocatalytic performance. Typical bulk BiTaO4 does not have any water splitting capability and shows poor photodegradation activity. However, the {010} facet dominant BiTaO4 single-crystal nanoplates realize the H2 evolution of BiTaO4 and improve the photodegradation activity 52 times via conduction band minimum up-shift. The understanding of the facet effect on photocatalysis will provide valuable instructions for the design of other photocatalysts.