Issue 46, 2016

Magnetically-active Pickering emulsions stabilized by hybrid inorganic/organic networks

Abstract

Magnetically-active hybrid networks (MHNs) are complex inorganic/organic composite materials that have been synthesized from the coupling of amine-functionalized iron oxide nanoparticles (amine-IONs) and pre-assembled shell crosslinked knedel-like (SCK) polymeric nanoconstructs. The intricate structure of these materials is composed of several inter-connected bundles of SCKs covalently bound to amine-IONs, which afford them magnetic responsivity. The MHNs were originally designed to sequester complex hydrocarbons from water; however, they have displayed a remarkable ability to form stable Pickering emulsions between organic solvents and water, upon mechanical stimulus. Two methods of emulsification, vortex and probe sonication, have been utilized to yield magnetically-active toluene-in-water and dodecane-in-water emulsions, which are stable for up to two months in the presence of the MHNs. A detailed study of the effect of the water-to-oil (W : O) volume ratio and the MHN concentration on the droplet size of the emulsions revealed that the smallest droplet size, and narrowest dispersity were obtained at a W : O = 3 : 1, for all conditions tested. Additionally, concentrations of MHNs as low as 1 mg mL−1 and 1.5 mg mL−1, for emulsions prepared via vortex and probe sonication, respectively, were sufficient to yield the smallest droplets and narrowest distributions. Furthermore, the oil droplets stabilized by the MHNs exhibited magnetic character, and could be manipulated with an external magnetic field.

Graphical abstract: Magnetically-active Pickering emulsions stabilized by hybrid inorganic/organic networks

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2016
Accepted
25 Oct 2016
First published
03 Nov 2016

Soft Matter, 2016,12, 9342-9354

Magnetically-active Pickering emulsions stabilized by hybrid inorganic/organic networks

J. A. Flores, A. A. Jahnke, A. Pavia-Sanders, Z. Cheng and K. L. Wooley, Soft Matter, 2016, 12, 9342 DOI: 10.1039/C6SM01830K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements