Issue 46, 2016

Kinetics of liquid–liquid phase separation in protein solutions exhibiting LCST phase behavior studied by time-resolved USAXS and VSANS

Abstract

We study the kinetics of the liquid–liquid phase separation (LLPS) and its arrest in protein solutions exhibiting a lower critical solution temperature (LCST) phase behavior using the combination of ultra-small angle X-ray scattering (USAXS) and very-small angle neutron scattering (VSANS). We employ a previously established model system consisting of bovine serum albumin (BSA) solutions with YCl3. We follow the phase transition from sub-second to 104 s upon an off-critical temperature jump. After a temperature jump, the USAXS profiles exhibit a peak that grows in intensity and shifts to lower q values with time. Below 45 °C, the characteristic length scale (ξ) obtained from this scattering peak increases with time with a power of about 1/3 for different sample compositions. This is in good agreement with the theoretical prediction for the intermediate stage of spinodal decomposition where the growth is driven by interface tension. Above 45 °C, ξ follows initially the 1/3 power law growth, then undergoes a significant slowdown, and an arrested state is reached below the denaturation temperature of the protein. This growth kinetics may indicate that the final composition of the protein-rich phase is located close to the high density branch of the LLPS binodal when a kinetically arrested state is reached.

Graphical abstract: Kinetics of liquid–liquid phase separation in protein solutions exhibiting LCST phase behavior studied by time-resolved USAXS and VSANS

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2016
Accepted
03 Nov 2016
First published
03 Nov 2016
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2016,12, 9334-9341

Kinetics of liquid–liquid phase separation in protein solutions exhibiting LCST phase behavior studied by time-resolved USAXS and VSANS

S. Da Vela, M. K. Braun, A. Dörr, A. Greco, J. Möller, Z. Fu, F. Zhang and F. Schreiber, Soft Matter, 2016, 12, 9334 DOI: 10.1039/C6SM01837H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements