Issue 99, 2016, Issue in Progress

Simultaneous topographic and chemical patterning via imprinting defined nano-reactors

Abstract

Simultaneous topographic and chemical patterning has attracted extensive attention in energy harvesting, sensing, and tissue engineering applications. However, it is still challenging to find a universal topographic-chemical patterning method that applies to arbitrary reactions, and offers tunability on the scale of chemical reactions. Herein, we develop a novel strategy to introduce spatially defined ultra-small reactors based on polymer carriers and imprinting lithography to realize simultaneous topographic and chemical patterning. We present two applications to demonstrate the patterning ability of our method, including synthesizing an ultrafine structured layer of photoluminescent Eu(III) complex on polymer substrate, as well as creating a freestanding poly(maleic anyhydride-alt-1-octadecene)-polyvinyl alcohol copolymer nanostructure. Further studies show that chemical reactions at polymer interfaces were confined within zepto-liter to atto-liter spaces, which corresponded to 103 to 106 molecules. The scale of chemical reactions can be readily tuned through varying imprinting conditions such as pattern geometry, imprinting time, etc. Compared to current patterning techniques, our strategy possesses higher chemical flexibility and compatibility, and allows for better control over the chemical reaction. Not only will this method facilitate fundamental studies of diffusion, reaction dynamics and interfacial chemistry, but it is also highly desired for engineering applications including surface modification, conformal coating and nanofabrication.

Graphical abstract: Simultaneous topographic and chemical patterning via imprinting defined nano-reactors

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2016
Accepted
04 Oct 2016
First published
05 Oct 2016

RSC Adv., 2016,6, 96538-96544

Simultaneous topographic and chemical patterning via imprinting defined nano-reactors

Z. Zhao, H. Nan, M. Sun and X. He, RSC Adv., 2016, 6, 96538 DOI: 10.1039/C6RA22169F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements