Use of morphological features of carbonaceous materials for improved mechanical properties of epoxy nanocomposites
Abstract
The influence of reinforcement morphology on damage tolerance and fracture toughness of epoxy based nanocomposites has been studied. Two different forms of carbonaceous reinforcements were used: multi-layered graphene (MLG) and nanostructured graphite (NSG). The maximum increase in Young's modulus was observed from 609.6 MPa to 766 MPa (25.7% increase) in the case of 0.1 wt% NSG. The NSG showed a maximum increase in hardness up to 7.9% while MLG showed up to 18.3%. The MLG and NSG increased the storage modulus and Tg while loss modulus and tan δ decreased with MLG and NSG. SEM images of the fractured surfaces of tensile specimens showed that the fracture mode was significantly altered by MLG and NSG.