Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 30, 2016
Previous Article Next Article

Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3]2+-labeled streptavidin

Author affiliations

Abstract

Electron transfer from a biotinylated electron donor to photochemically generated Ru(III) complexes covalently anchored to streptavidin is demonstrated by means of time-resolved laser spectroscopy. Through site-selective mutagenesis, a single cysteine residue was engineered at four different positions on streptavidin, and a Ru(II) tris-diimine complex was then bioconjugated to the exposed cysteines. A biotinylated triarylamine electron donor was added to the Ru(II)-modified streptavidins to afford dyads localized within a streptavidin host. The resulting systems were subjected to electron transfer studies. In some of the explored mutants, the phototriggered electron transfer between triarylamine and Ru(III) is complete within 10 ns, thus highlighting the potential of such artificial metalloenzymes to perform photoredox catalysis.

Graphical abstract: Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3]2+-labeled streptavidin

Back to tab navigation

Supplementary files

Article information


Submitted
13 Jun 2016
Accepted
07 Jul 2016
First published
14 Jul 2016

Org. Biomol. Chem., 2016,14, 7197-7201
Article type
Communication

Light-driven electron injection from a biotinylated triarylamine donor to [Ru(diimine)3]2+-labeled streptavidin

S. G. Keller, A. Pannwitz, F. Schwizer, J. Klehr, O. S. Wenger and T. R. Ward, Org. Biomol. Chem., 2016, 14, 7197
DOI: 10.1039/C6OB01273F

Social activity

Search articles by author

Spotlight

Advertisements