Issue 44, 2016

The breast cancer stem cell potency of copper(ii) complexes bearing nonsteroidal anti-inflammatory drugs and their encapsulation using polymeric nanoparticles

Abstract

We report the cancer stem cell (CSC) potency of a novel series of copper(II)-phenanthroline complexes bearing nonsteriodial anti-inflammatory drugs: naproxen, tolfenamic acid, and indomethacin (2a–3c). Two of the complexes, 2a and 3c, kill breast CSC-enriched HMLER-shEcad cells (grown in both monolayer and three-dimensional cell cultures) to a significantly better extent than salinomycin, a well-established CSC toxin. The most potent complex in the series, 3c induces its cytotoxic effect by generating intracellular reactive oxygen species (ROS) and inhibiting cyclooxgenase-2 (COX-2) activity. Encapsulation of 3c using biodegradable methoxy poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic) acid (PEG–PLGA) copolymers at the appropriate feed (5%, 3c NP5) enhances breast CSC uptake and reduces overall toxicity. The nanoparticle formulation, 3c NP5 selectively kills breast CSCs over bulk breast cancer cells, and evokes a similar cellular response to the payload, 3c. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver CSC-potent metal complexes into CSCs.

Graphical abstract: The breast cancer stem cell potency of copper(ii) complexes bearing nonsteroidal anti-inflammatory drugs and their encapsulation using polymeric nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
01 Oct 2016
Accepted
13 Oct 2016
First published
13 Oct 2016

Dalton Trans., 2016,45, 17867-17873

The breast cancer stem cell potency of copper(II) complexes bearing nonsteroidal anti-inflammatory drugs and their encapsulation using polymeric nanoparticles

A. Eskandari, J. N. Boodram, P. B. Cressey, C. Lu, P. M. Bruno, M. T. Hemann and K. Suntharalingam, Dalton Trans., 2016, 45, 17867 DOI: 10.1039/C6DT03811E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements