Issue 27, 2016

The Verwey structure of a natural magnetite

Abstract

A remarkably complex electronic order of Fe2+/Fe3+ charges, Fe2+ orbital states, and weakly metal–metal bonded Fe3 units known as trimerons, was recently discovered in stoichiometric magnetite (Fe3O4) below the 125 K Verwey transition. Here, the low temperature crystal structure of a natural magnetite from a mineral sample has been determined using the same microcrystal synchrotron X-ray diffraction method. Structure refinement demonstrates that the natural sample has the same complex electronic order as pure synthetic magnetite, with only minor reductions of orbital and trimeron distortions. Chemical analysis shows that the natural sample contains dopants such as Al, Si, Mg and Mn at comparable concentrations to extraterrestrial magnetites, for example, as reported in the Tagish Lake meteorite. Much extraterrestrial magnetite exists at temperatures below the Verwey transition and hence our study demonstrates that the low temperature phase of magnetite represents the most complex long-range electronic order known to occur naturally.

Graphical abstract: The Verwey structure of a natural magnetite

Supplementary files

Article information

Article type
Communication
Submitted
22 Dec 2015
Accepted
19 Feb 2016
First published
19 Feb 2016

Chem. Commun., 2016,52, 4864-4867

Author version available

The Verwey structure of a natural magnetite

G. Perversi, J. Cumby, E. Pachoud, J. P. Wright and J. P. Attfield, Chem. Commun., 2016, 52, 4864 DOI: 10.1039/C5CC10495E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements