Issue 39, 2015

Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation

Abstract

Marine collagen has been attracting attention as a medical material in recent times due to the low risk of pathogen infection compared to animal collagen. Type I collagen extracted from the swim bladder of Bester sturgeon fish has excellent characteristics such as high denaturation temperature, high solubility, low viscosity and an extremely fast rate to form large bundle of fibers under certain conditions. These specific characteristics of swim bladder collagen (SBC) permit us to create stable, disk shaped hydrogels with concentric orientation of collagen fibers by the controlled diffusion of neutral buffer through collagen solution at room temperature. However, traditionally used animal collagens, e.g. calf skin collagen (CSC) and porcine skin collagen (PSC), could not form any stable and oriented structure by this method. The mechanism of the superstructure formation of SBC by a diffusion induced gelation process has been explored. The fast fibrillogenesis rate of SBC causes a quick squeezing out of the solvent from the gel phase to the sol phase during gelation, which builds an internal stress at the gel–sol interface. The tensile stress induces the collagen molecules of the gel phase to align along the gel–sol interface direction to give this concentric ring-shaped orientation pattern. On the other hand, the slow fibrillogenesis rate of animal collagens due to the high viscosity of the solution does not favor the ordered structure formation. The denaturation temperature of SBC increases significantly from 31 °C to 43 °C after gelation, whereas that of CSC and PSC were found to increase a little. Rheology experiment shows that the SBC gel has storage modulus larger than 15 kPa. The SBC hydrogels with thermal and mechanical stability have potential as bio-materials for tissue engineering applications.

Graphical abstract: Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation

Article information

Article type
Paper
Submitted
10 May 2015
Accepted
21 Aug 2015
First published
24 Aug 2015

J. Mater. Chem. B, 2015,3, 7658-7666

Author version available

Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation

Md. T. I. Mredha, X. Zhang, T. Nonoyama, T. Nakajima, T. Kurokawa, Y. Takagi and J. P. Gong, J. Mater. Chem. B, 2015, 3, 7658 DOI: 10.1039/C5TB00877H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements