Issue 30, 2015

Binding performance of pepsin surface-imprinted polymer particles in protein mixtures

Abstract

Surface-imprinted polymer particles facilitate the accessibility of synthetic selective binding sites for proteins. Given their volume-to-surface ratio, submicron particles offer a potentially large surface area facilitating fast rebinding kinetics and high binding capacities, as investigated herein by batch rebinding experiments. Polymer particles were prepared with (3-acrylamidopropyl)trimethylammonium chloride as functional monomer, and ethylene glycol dimethacrylate as cross-linker in the presence of pepsin as template molecule via miniemulsion polymerization. The obtained polymer particles had an average particle diameter of 623 nm, and a specific surface area of 50 m2 g−1. The dissociation constant and maximum binding capacity were obtained by fitting the Langmuir equation to the corresponding binding isotherm. The dissociation constant was 7.94 μM, thereby indicating a high affinity; the binding capacity was 0.72 μmol m−2. The binding process was remarkably fast, as equilibrium binding was observed after just 1 min of incubation. The previously determined selectivity of the molecularly imprinted polymer for pepsin was for the first time confirmed during competitive binding studies with pepsin, bovine serum albumin, and β-lactoglobulin. Since pepsin has an exceptionally high content in acidic amino acids enabling strong interactions with positively charged quaternary ammonium groups of the functional monomers, another competitive protein, i.e., α1-acid glycoprotein, was furthermore introduced. This protein has a similarly high content in acidic amino acids, and was used for demonstrating the implications of ionic interactions on the achieved selectivity.

Graphical abstract: Binding performance of pepsin surface-imprinted polymer particles in protein mixtures

Article information

Article type
Paper
Submitted
10 Apr 2015
Accepted
23 Jun 2015
First published
23 Jun 2015

J. Mater. Chem. B, 2015,3, 6248-6254

Author version available

Binding performance of pepsin surface-imprinted polymer particles in protein mixtures

B. Pluhar, U. Ziener and B. Mizaikoff, J. Mater. Chem. B, 2015, 3, 6248 DOI: 10.1039/C5TB00657K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements