Issue 109, 2015

Vanadium(v) tetra-phenolate complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability

Abstract

Reaction of α,α,α′,α′-tetrakis(3,5-di-tert-butyl-2-hydroxyphenyl)-p-xylene (p-L1H4) with two equivalents of [VO(OR)3] (R = nPr, tBu) in refluxing toluene afforded, after work-up, the complexes {[VO(OnPr)(THF)]2(μ-p-L1)}·2(THF) (1·2(THF)) or {[VO(OtBu)]2(μ-p-L1)}·2MeCN (2·2MeCN), respectively in moderate to good yield. A similar reaction using the meta pro-ligand, namely α,α,α′,α′-tetrakis(3,5-di-tert-butyl-2-hydroxyphenyl)-m-xylene (m-L2H4) afforded the complex {[VO(OnPr)(THF)]2(μ-p-L2)} (3). Use of [V(Np-R1C6H4)(tBuO)3] (R1 = Me, CF3) with p-L1H4 led to the isolation of the oxo–imido complexes {[VO(tBuO)][V(Np-R1C6H4) (tBuO)](μ-p-L1)} (R1 = Me, 4·CH2Cl2; CF3, 5·CH2Cl2), whereas use of [V(Np-R1C6H4)Cl3] (R1 = Me, CF3) in combination with Et3N/p-L1H4 or p-L1Na4 afforded the diimido complexes {[V(Np-MeC6H4)(THF)Cl]2(μ-p-L1)}·4toluene (6·4toluene) or {[V(Np-CF3C6H4)(THF)Cl]2(μ-p-L1)} (7). For comparative studies, the complex [(VO)(μ-OnPr)L3]2 (8) has also been prepared via the interaction of [VO(nPrO)3] and 2-(α-(2-hydroxy-3,5-di-tert-butylphenyl)benzyl)-4,6-di-tert-butylphenol (L3H2). The crystal structures of 1·2THF, 2·2MeCN, 3, 4·CH2Cl2, 5·CH2Cl2, 6·4toluene·THF, 7 and 8 have been determined. Complexes 1–3 and 5–8 have been screened as pre-catalysts for the polymerization of ethylene in the presence of a variety of co-catalysts (with and without a re-activator), including DMAC (dimethylaluminium chloride), DEAC (diethylaluminium chloride), EADC (ethylaluminium dichloride) and EASC (ethylaluminium sesquichloride) at various temperatures and for the co-polymerization of ethylene with propylene; results are compared versus the benchmark catalyst [VO(OEt)Cl2]. In some cases, activities as high as 243 400 g mmol−1 V−1 h−1 (30.43 kgPE mmol V−1 h−1 bar−1) were achievable, whilst it also proved possible to obtain higher molecular weight polymers (in comparable yields to the use of [VO(OEt)Cl2]). In all cases with dimethylaluminium chloride (DMAC)/ethyltrichloroacetate (ETA) activation, the activities achieved surpassed those of the benchmark catalyst. In the case of the co-polymerization of ethylene with propylene, complexes 1–3 and 5–8 showed comparable or higher molecular weight than [VO(OEt)Cl2] with comparable catalytic activities or higher in the case of the imido complexes 6 and 7.

Graphical abstract: Vanadium(v) tetra-phenolate complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2015
Accepted
07 Oct 2015
First published
08 Oct 2015

RSC Adv., 2015,5, 89783-89796

Author version available

Vanadium(V) tetra-phenolate complexes: synthesis, structural studies and ethylene homo-(co-)polymerization capability

C. Redshaw, M. J. Walton, M. R. J. Elsegood, T. J. Prior and K. Michiue, RSC Adv., 2015, 5, 89783 DOI: 10.1039/C5RA20177B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements