Issue 61, 2015

Quantum molecular modelling of ibuprofen bound to human serum albumin

Abstract

The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 Å, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in non-hydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.

Graphical abstract: Quantum molecular modelling of ibuprofen bound to human serum albumin

Article information

Article type
Paper
Submitted
12 Mar 2015
Accepted
21 May 2015
First published
02 Jun 2015

RSC Adv., 2015,5, 49439-49450

Author version available

Quantum molecular modelling of ibuprofen bound to human serum albumin

D. S. Dantas, J. I. N. Oliveira, J. X. Lima Neto, R. F. da Costa, E. M. Bezerra, V. N. Freire, E. W. S. Caetano, U. L. Fulco and E. L. Albuquerque, RSC Adv., 2015, 5, 49439 DOI: 10.1039/C5RA04395F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements