Issue 61, 2015

Green and low-cost synthesis of PANI–TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting

Abstract

Among conductive polymers, polyaniline (PANI) has been widely used to improve electronic conductivity, solar energy transfer and photocatalytic activity of TiO2, due to its ease preparation and excellent environmental stability. In this study, a green and low-cost synthesis procedure was developed for the preparation of PANI–TiO2 nanocomposite films. A non-toxic and low-cost polymerization route, starting from aniline dimer and polystyrene sulphonate as emulsioning/doping agent in water, was employed to synthesize the conductive form of PANI (emeraldine salt, ES). Anatase TiO2 nanocrystalline mesoporous films were prepared by a novel and green sol–gel spin coating method, which employs titanium tetraisopropoxide, acetic acid and a nonionic surfactant (Tween 20) in excess of water, avoiding the use of flammable solvents. Uniform PANI–TiO2 composite films, containing PANI in either ES or pernigraniline base (PB) forms, i.e. PANI/TiO2 and PANIox/TiO2, respectively, were then prepared by a simple impregnation method. The films were characterized by means of XRD, ATR, FESEM and TEM techniques and their photocatalytic activity was assessed using them as photoelectrochemical water splitting photoanodes. Both PANI/TiO2 and PANIox/TiO2 showed an enhanced water oxidation efficiency under AM 1.5G simulated sunlight irradiation, reaching about 2 and 1.6 fold higher photocurrent densities, respectively, than a pure TiO2 nanoparticles film. They also demonstrated good stability after several hours of operation. UV-Vis spectrophotometry and IPCE analysis reveal the main role of PANI, in the system PANI/TiO2 for the PEC water oxidation, is as sensitizer of TiO2 in the UV light by significantly increasing charges separation, electrons transport and collected photoelectrons, indirectly contributing to the generation of O2. Indeed, PANI-ES photogenerated e are transferred to the TiO2 conduction band while its h+ can react with OH to produce OH radicals that generate H2O2, which can subsequently be photooxidized on the TiO2 NPs surface generating more O2 than such produced by the direct water oxidation on the TiO2 holes.

Graphical abstract: Green and low-cost synthesis of PANI–TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2015
Accepted
28 May 2015
First published
28 May 2015
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2015,5, 49429-49438

Author version available

Green and low-cost synthesis of PANI–TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting

D. Hidalgo, S. Bocchini, M. Fontana, G. Saracco and S. Hernández, RSC Adv., 2015, 5, 49429 DOI: 10.1039/C5RA06734K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements