Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 58, 2015

A versatile bio-inspired material platform for catalytic applications: micron-sized “buckyball-shaped” TiO2 structures

Author affiliations

Abstract

A simple sol–gel synthesis method is presented for the production of micron-sized buckyball-like TiO2 architectures using naturally occurring Lycopodium clavatum (LC) spores as biotemplates. We demonstrate that by simply altering the calcination temperature and titanium(IV) isopropoxide : ethanol volume ratio, the crystal structure and surface composition of the buckyball-like TiO2 overlayer can be readily fine-tuned. After the removal of the biological scaffold, the unique surface morphology and pore structure of the LC biotemplate can be successfully transferred to the inorganic TiO2 overlayer. We also utilize photocatalytic degradation of Rhodamine B dye samples to demonstrate the photocatalytic functionality of these micron-sized buckyball-like TiO2 architectures. Moreover, we show that the photocatalytic activity of TiO2 overlayers can be modified in a controlled manner by varying the relative surface coverages of anatase and rutile domains. These results open a potential gateway for the synthesis of a variety of bio-inspired materials with unique surface properties and shapes comprised of reducible metal oxides, metal sulfides, mixed-metal oxides, and/or perovskites.

Graphical abstract: A versatile bio-inspired material platform for catalytic applications: micron-sized “buckyball-shaped” TiO2 structures

Article information


Submitted
09 Mar 2015
Accepted
20 May 2015
First published
20 May 2015

RSC Adv., 2015,5, 47174-47182
Article type
Paper
Author version available

A versatile bio-inspired material platform for catalytic applications: micron-sized “buckyball-shaped” TiO2 structures

D. A. Erdogan, T. Solouki and E. Ozensoy, RSC Adv., 2015, 5, 47174 DOI: 10.1039/C5RA04171F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements