Issue 41, 2015

Polyvinylpyrrolidone (PVP) in nanoparticle synthesis


Colloidal synthesis offers a route to nanoparticles (NPs) with controlled composition and structural features. This Perspective describes the use of polyvinylpyrrolidone (PVP) to obtain such nanostructures. PVP can serve as a surface stabilizer, growth modifier, nanoparticle dispersant, and reducing agent. As shown with examples, its role depends on the synthetic conditions. This dependence arises from the amphiphilic nature of PVP along with the molecular weight of the selected PVP. These characteristics can affect nanoparticle growth and morphology by providing solubility in diverse solvents, selective surface stabilization, and even access to kinetically controlled growth conditions. This Perspective includes discussions of the properties of PVP-capped NPs for surface enhanced Raman spectroscopy (SERS), assembly, catalysis, and more. The contribution of PVP to these properties as well as its removal is considered. Ultimately, the NPs accessed through the use of PVP in colloidal syntheses are opening new applications, and the concluding guidelines provided herein should enable new nanostructures to be accessed facilely.

Graphical abstract: Polyvinylpyrrolidone (PVP) in nanoparticle synthesis

Article information

Article type
31 Jul 2015
22 Sep 2015
First published
22 Sep 2015

Dalton Trans., 2015,44, 17883-17905

Author version available

Polyvinylpyrrolidone (PVP) in nanoparticle synthesis

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu and S. E. Skrabalak, Dalton Trans., 2015, 44, 17883 DOI: 10.1039/C5DT02964C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity