Issue 1, 2015

Cyclic trinuclear copper(i), silver(i), and gold(i) complexes: a theoretical insight

Abstract

The metal–ligand, M–L, bonding situation in cyclic trinuclear complexes, CTCs, of copper(I), silver(I), and gold(I) was investigated in terms of the energy decomposition analysis (EDA-NOCV) and natural bond orbitals (NBOs). The anisotropy of the induced current density (ACID) and magnetic response were employed to evaluate the effect of electronic conjugation and metal–metal interactions in CTCs. The EDA-NOCV results show that the M–L bonding is stronger in gold(I) than in copper(I) or silver(I) complexes. Au+–L bonds present an elevated covalent character when compared with Cu+–L and Ag+–L bonds. The NBO analysis confirms the elevated covalent character observed for Au+–L bonds, indicating that the ligand–metal donation, L → M, and the metal–ligand back-donation, M → L, are more stabilizing in gold(I) than in copper(I) or silver(I) complexes. Both ACID and the magnetic response calculations reveal that there are cyclic conjugations in the ligands and a strong diatropic ring current indicating the presence of aromaticity. However, there is no through-bond M–L conjugation between the ligands and the metallic centers, as indicated by the absence of a continuous anisotropy boundary surface involving M–L bonds.

Graphical abstract: Cyclic trinuclear copper(i), silver(i), and gold(i) complexes: a theoretical insight

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2014
Accepted
20 Oct 2014
First published
11 Nov 2014

Dalton Trans., 2015,44, 377-385

Author version available

Cyclic trinuclear copper(I), silver(I), and gold(I) complexes: a theoretical insight

G. F. Caramori, R. M. Piccoli, M. Segala, A. Muñoz-Castro, R. Guajardo-Maturana, D. M. Andrada and G. Frenking, Dalton Trans., 2015, 44, 377 DOI: 10.1039/C4DT02514H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements