A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: a QM/QTAIM highlight†
Abstract
We have firstly shown that the T·T(w) and C·C(w) DNA mismatches with wobble (w) geometry stay in slow tautomeric equilibrium with short T·T*(WC) and C·C*(WC) Watson–Crick (WC) mispairs. These non-dissociative tautomeric rearrangements are controlled by the plane-symmetric, highly stable, highly polar and zwitterionic transition states. The obtained results allow us to understand in what way the T·T(w) and C·C(w) mismatches acquire enzymatically competent T·T*(WC) and C·C*(WC) conformations directly in the hydrophobic recognition pocket of a high-fidelity DNA-polymerase, thereby producing thermodynamically non-equilibrium spontaneous transversions. The simplest numerical estimation of the frequency ratio of the TT to CC spontaneous transversions satisfactorily agrees with experimental data.