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Abstract. We have firstly shown that the Т·Т(w) and С·С(w) DNA mismatches with 

wobble (w) geometry stay in the slow tautomeric equilibrium with short Т·Т*(WC) and 

С·С*(WC) Watson-Crick (WC) mispairs. These non-dissociative tautomeric rearrangements are 

controlled by the plane-symmetric, highly stable, highly polar and zwitterionic transition states. 

Obtained results allow us to understand, in what way the Т·Т(w) and С·С(w) mismatches 

acquire enzymatically competent Т·Т*(WC) and С·С*(WC) conformations directly in the 

hydrophobic recognition pocket of the high-fidelity DNA-polymerase, thereby producing 

thermodynamically non-equilibrium spontaneous transversions. The simplest numerical 

estimation of the frequency ratio of the TT to CC spontaneous transversions satisfactorily agrees 

with experimental data.  
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† Electronic supplementary information (ESI) available: (i) Computational details; (ii) Physico-chemical 

parameters of the specific intermolecular contacts; (iii) Energetic and kinetic characteristics of the mispairs 

tautomerisation; (iv) Interaction energies for the investigated DNA mispairs; (v) Structures of the stationary points 

of the tautomeric conversions; (vi) Profiles of the glycosidic parameters of the mispairs along the IRC of the 

tautomerisation; (vii) Ranges of the existence of the obtained patterns of the specific intermolecular interactions 

along the IRC of the tautomerisation. See DOI: 10.1039/x0xx00000x. 
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Introduction. An intriguing theme of the origin of the spontaneous point mutations has excited 

researches’ mind during several decades suggesting DNA mispairs as their source [1-6]. Characterizing 

current state of this biologically important area of knowledge, it can be certainty stated that one of the 

stumbling stones in the theory of spontaneous point mutagenesis, which slowly gets on its feet, is 

understanding of the nature of the spontaneous transversions [7-10] caused by the homo-pyrimidine DNA 

base mispairs. Thorough analysis of the literature evidences that progress in this biologically important 

area is constrained by the lack of experimental data, especially of the X-ray crystallographic analysis of 

the enzymatically competent conformation of the incorrect C·C and T·T nucleobase pairs in the active 

center of the high-fidelity replicative DNA-polymerase at the site of incorporation [11-13], and, from the 

other hand, with the absence of new model conceptions and approaches. 

The rare tautomer hypothesis of spontaneous point mutagenesis formulated by Watson and Crick 

[1] has been recently challenged by computational [14,15] and experimental [11,12,16-18] studies 

demonstrating that displacement of one single proton alters H-bonding scheme of the mispair, making it 

indistinguishable from the canonical Watson-Crick base pairs, that give impetus to further studies. It is 

logical to assume within the framework of this hypothesis that exceptionally the C·C*(WC) [19-21] and 

T·T*(WC) [20-22] base mispairs possessing Watson-Crick-like (WC) geometry and containing rare 

tautomers [23,24] of the C and T DNA bases (here and below they are marked with an asterisk) can be 

enzymatically incorporated into the structure of the DNA double helix and so are implicated in the origin 

of spontaneous transversions. Albeit wobble (w) [25-27] C·C(w) and T·T(w) base mispairs cause mild 

structural and dynamic distortions in the composition of the DNA double helix [28], we have suggested 

that the C·C*(WC) [19] and T·T*(WC) [20] mismatches with cis-oriented glycosidic bonds [20,21] are 

their enzymatically competent configurations causing spontaneous transversions. 

In this study we have examined in details all possible tautomerisation ways connecting the 

homo-pyrimidine T·T(w) and C·C(w) mispairs into the C·C*(WC) and T·T*(WC) DNA mismatches 

and occurring without breakage of the mutual cis-orientation of their glycosidic bonds. Formed 

C·C*(WC) and T·T*(WC) mismatches are able to accommodate into the hydrophobic recognition 

pocket of the high-fidelity replicative DNA-polymerase and thus to be responsible for the origin of 

transversion mutations.  

All geometric, energetic and vibrational calculations of the considered base mispairs and 

transition states (TSs) of their conversion have been performed by Gaussian’09 package [29] using 

B3LYP [30] and MP2 [31] levels of theory combined with a wide variety of basis sets. Bader's quantum 

theory of Atoms in Molecules was applied to analyse the electron density distribution [32-34]. IRC 

calculations have been performed to further confirm the proposed mechanisms of conversion [35] and to 

obtain profiles of the energetic and geometric characteristics of the base pairs and H-bonds in them along 

the reaction pathway [36-38] (for more details see ESI†). 
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Thus, we have shown for the first time that plane-symmetric (Cs) Т·Т(w) mismatch, that in fact 

is observed in the DNA double helix under physiological conditions [25-27], stays in slow tautomeric 

equilibrium with two Т·Т*(WC) [20] and Т*O2·Т(WC) mispairs representing itself propeller-like and 

structurally non-rigid complexes [39,40] (Figs. 1, S1 and Tables 1, S1, S4). Notably, the easiness of 

their acquisition of the plane-symmetric architecture (∆∆GTS=1.68 and 1.54 kcal·mol
-1

, respectively, 

T=298.15 K [39]) enables them to be effectively incorporated into the structure of the DNA double 

helix. 

Both Т·Т(w)↔Т·Т*(WC) and Т·Т(w)↔Т*O2·Т(WC) tautomerisation processes are controlled 

by the plane-symmetric, highly polar, highly stable and zwitterionic TS
T+·T-

T·T(w)↔T·T*(WC) and TS
T-

·T+
T·T(w)↔T*O2·T(WC) transition states, respectively (Figs. 1, S1 and Tables S1-S4). Their structures are 

stabilized by strong electrostatic interactions (~ 100 kcal·mol
-1

) and four intermolecular H-bonds [41], 

whose contribution to the interaction energy is not decisive (Tables S1, S3). High stability of these TSs 

excludes direct participation in these tautomerisation processes of the endogenous water molecules as 

active participants of these events [42] and allows to consider the influence of the stacking interactions 

with neighboring Watson-Crick base pairs [5,6,43,44] on the course of these tautomerisation reactions 

as slight perturbation. It is important that both Т·Т(w)↔Т·Т*(WC) and Т·Т(w)↔Т*O2·Т(WC) 

tautomerisation processes occur by the non-dissociative mechanism (Figs. S2, S3) and are controlled by 

the 12 and 10 unique patterns of the specific intermolecular contacts, respectively, that successively 

replace each other along the IRC of tautomerisation (Fig. 2 and Tables S1, S5). 

Another important finding is that the Т·Т*O2(WC) mispair is in the rapid tautomeric equilibrium 

with the Т*O2·Т(WC) mismatch (τ99.9%=3.88·10
-10

 s), that is implemented by the mechanism of the 

concerted synchronous double proton transfer (DPT) [45,46] along neighboring H-bonds (Figs. 1b, S1 

and Tables 1, S1-S4). 

At the same time, the DPT tautomerisation of the Т·Т(w) DNA mismatch into the Т*·Т*O2(w) 

mispair with Cs symmetry actually does not happen, since the terminal Т*·Т*O2(w) mismatch is short-

lived (τ=5.61·10
-15

 s), dynamically unstable structure, for which low-frequency intermolecular 

vibrations can’t develop (Figs. 1b, S1 and Tables 1, S1-S4). 

By comparison of the energetic and kinetic characteristics for the Т·Т(w)↔Т·Т*(WC) and 

Т·Т(w)↔Т·Т*O2(WC) tautomerisation processes, we have established that exactly first of them is 

responsible for the acquisition by the Т·Т(w) mispair of the enzymatically competent Т·Т*(WC) 

conformation in the hydrophobic recognition pocket of the high-fidelity replicative DNA-polymerase, 

that is a necessary and sufficient condition for the occurrence of the corresponding spontaneous 

transversions [11-13]. 

In the isolated state the Т·Т(w) mispair has a pseudo-two-fold symmetry. Calculations show that 

the transition between these pseudo-symmetrical states is provided by the non-dissociative mechanism 
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of the tautomeric nature (Fig. 3): exactly it, in our opinion, adequately explains existing experimental 

data [47] that have been left without any microstructural interpretation for a long period of time. 

We have also established for the first time (Figs. 4, S4 and Tables 1, S1-S3, S6) that propeller-

like and non-rigid С·С*(WC) mismatch with C1 symmetry [19] slowly tautomerises into the С·С(w) 

(∠C4N3(C)N3C4(C*)=9.0º) and С*·С*(w) (Сs) mispairs through the highly polar, highly stable and 

zwitterionic TS
C-·C+

C·C(w)↔C·C*(WC) (∠C4N3(C
-
)N3C4(C

+
)=4.3º) and TS

C-·C+
C·C*(WC)↔C*·C*(w) (Сs) 

transition states, respectively. These TSs are stabilized by strong electrostatic interactions (~ 100 

kcal·mol
-1

 (Table S3)) involving intermolecular H-bonds of medium strength that, similarly to the 

transformations of the T·T(w) mispair, excludes direct participation of the water molecules in these 

tautomerisation processes and indicates the negligible impact of the π-π stacking interactions [5,43,44] 

and sequence [6] on the cosidered tautomerisation processes. 

Our results show that the C·C(w)↔C·C*(WC) and C·C*(WC)↔C*·C*(w) reactions occur by 

the non-dissociative mechanism (Figs. S5, S6) and are accompanied by 11 and 10 unique patterns of the 

specific intermolecular contacts including H-bonds, attractive van der Waals contacts and loosened 

covalent bridges, respectively, that consistently change each other along the IRC of tautomerisation 

(Fig. 5 and Tables S1, S7). 

Moreover, we have also tested the C*·C*(w) mispair for the possibility of its tautomerisation via 

the DPT along intermolecular H-bonds according to Löwdin’s mechanism [48,49]. Consequently, it was 

established that the С*·С*(w)↔С*О2·С(w) DPT tautomerisation does not occur, since the С*О2·С(w) 

mismatch is dynamically unstable structure (τ=2.45·10
-13

 s), for which low-frequency intermolecular 

vibrations can not develop (Figs. 4, S4 and Tables 1, S6). 

Biological importance of the С·С(w)→С·С*(WC) tautomeric conversion relies in the fact that it 

is kinetically controlled pathway for the formation directly in the essentially hydrophobic recognition 

pocket of the high-fidelity DNA-polymerase of the enzymatically competent C·C*(WC) mispair 

responsible for the occurrence of spontaneous point CC incorporation errors. 

Our results raise at least two interesting issues representing a challenge for the experiment. 

Firstly, – in what proportions coexist in double helical DNA highly polar С·С(w), С·С*(WC), which in 

the free state is a global minimum, and plane symmetric С*O2·С(w) mispairs? Secondly, since all these 

three mispairs have pseudo-two-fold symmetry, so the question arises about the mechanisms of their 

mutual transformation in the composition of the double helical DNA. Calculations indicate that these 

processes proceed via the non-dissociative mechanisms of the tautomeric origin (Fig. 6). 

Our data are in a good agreement with other theoretical calculations [28]. Thus, fixation in the 

DNA duplex of the C·C(w) mispair, stabilized by the N4H···N3 H-bond and N3···O2 van der Waals 

contact, and the T·T(w) mismatch, joined by the N3H···O4 and N3H···O2 H-bonds (Table S1), can be 

attributed to the fact that they are transformed into the C·C*(WC) and T·T*(WC) mismatches, 

respectively, through the tautomeric rearrangement accompanied with structural rebuilding of the base 
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mispairs (Figs. 3 and 6). This finding can’t be reflected by the MD calculations operating solely with the 

canonical tautomers [28]. 

Obtained data shed light on the microstructural meсhanisms of the occurrence of the spontaneous 

transversions caused by the homo-pyrimidine DNA mismatches and recognition of the latest by the 

reparation systems [50-52]. 

Numerical evaluation of the probability ratio of the acquisition of the enzymatically competent 

conformation by the Т·Т(w) mispair relatively to the analogical probability for the С·С(w) mismatch 

(2.3·10
2
) is consistent with experimental data showing values of the extending efficiencies that are 

higher by several orders for the T·T, than for the C·C transversion mispairs [53-55], and also 

significantly lower frequencies of spontaneous transversions in comparison with spontaneous transitions 

[56,57]. At this we have applied known formulas of physico-chemical kinetics [58,59]: thus, we have 

suggested that kf=1.09·10
-10

/kr=4.19·10
-4

 s
-1

 (Т·Т(w)↔Т·Т*(WC)), kf=1.59·10
-6

/kr=4.71·10
-13

 s
-1

 

(С·С(w)↔С·С*(WC)) and high-fidelity DNA-polymerase spends time ∆t
wrong

pol≈8.3·10
-3

 s [60,61] for 

the incorporation of one incoming incorrect nucleotide. Notably, we do not compare here absolute 

values of the mentioned above probabilities with corresponding literature data, since we are convinced 

that for their correct estimation it should be necessarily taken into account quantum tunneling of protons 

[62], which significantly accelerates tautomerisation processes. 

Our findings also add substantially to the understanding, why the pyrimidine·pyrimidine T·T(w) 

mismatches are much better deleted from the genome by the reparation systems “sharpened” for the 

wobble architecture than the C·C(w) mispairs (see works [28, 63] and refs. therein): the point is that the 

Т·Т(w)↔Т·Т*(WC) tautomeric equilibrium is much more shifted to the left than the 

С·С(w)↔С·С*(WC) tautomeric balance. 
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(a) (b) 

Fig. 1. Stationary structures on the reaction pathways of the (a) T·T(w)↔T·T*(WC)/T*O2·T(WC)/T*·T*O2(w) and 

(b) T*O2·T(w)↔T·T*O2(WC) tautomerisations via the sequential DPT accompanied by the structural rearrangement 

of the base pair obtained at the B3LYP/6-311++G(d,p) level of theory. ∆E - electronic energy of the base mispairs 

and TSs. Dotted lines indicate AH···B H-bonds and attractive A···B van der Waals contacts, while continuous – 

covalent bonds; carbon atoms are in light-blue, nitrogen – in dark-blue, hydrogen – in grey and oxygen – in red. 
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(a) (b) 

Fig. 2. Exchange of the patterns of the intermolecular AH···B H-bonds and attractive O/N···O van der 

Waals contacts (their energies EAH···B/O/N···O are estimated by the EML formula at the (3,-1) BCPs) 

along the IRC of the biologically important (a) T·T(w)↔T·T*(WC) and (b) T·T(w)↔T*O2·T(WC)

tautomerisations via the sequential DPT accompanied by the structural rearrangement of the base pair 

obtained at the B3LYP/6-311++G(d,p) level of theory (see Figs. 1, S1 and Tables S1, S5). 

 

Fig. 3. Interconversion of the pseudo-twofold symmetrical 

T·T(w) DNA mismatches via the tautomeric transition. 

Presented isoenergetic structures are linked with each other by 

the pseudo-dyadic axis of symmetry. For the designations see 

Fig. 1.  
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Table 1. Energetic and kinetic characteristics of the T·T(w)↔T·T*(WC), T·T(w)↔T*O2·T(WC), 

T*O2·T(w)↔T·T*O2(WC), T·T(w)↔T*·T*O2(w), C·C(w)↔C·C*(WC), C·C*(WC)↔C*·C*(w) and 

C*·C*(w)↔C*O2·C(w) tautomerisations via the sequential DPT accompanied by the structural rearrangement 

of the base pair obtained at the MP2/cc-pVQZ//B3LYP/6-311++G(d,p) level of theory (see also Figs. 1, 4, S1 

and S4). 

Tautomerisation ∆G
a
 ∆E

b
 ∆∆GTS

c
 ∆∆ETS

d
 ∆∆G

e
 ∆∆E

f
 τ99.9%

g
 

T·T(w)↔T·T*(WC) 8.98 8.64 31.06 31.90 22.09 23.26 1.65·10
4
 

T·T(w)↔T*O2·T(WC) 12.72 12.81 32.82 33.96 20.11 21.15 5.82·10
2
 

T*O2·T(w)↔T·T*O2(WC) 0.00 0.00 4.40 7.56 4.40 7.56 3.88·10
-10

 

T·T(w)↔T*·T*O2(w) 15.61 15.99 13.82 17.03 -1.79 1.03 3.88·10
-14

 

C·C(w)↔C·C*(WC) -8.90 -10.73 25.38 24.32 34.28 35.05 4.35·10
6
 

C·C*(WC)↔C*·C*(w) 1.34 1.50 18.34 19.44 17.00 17.94 2.90 

C*·C*(w)↔C*O2·C(w) 6.07 6.36 6.59 9.27 0.53 2.91 1.69·10
-12

 
a
The Gibbs free energy of the product relatively the reactant of the tautomerisation reaction (T=298.15 K), kcal·mol

-1
 

bThe electronic energy of the product relatively the reactant of the tautomerisation reaction, kcal·mol-1 
cThe Gibbs free energy barrier for the forward reaction of tautomerisation, kcal·mol-1 
d
The electronic energy barrier for the forward reaction of tautomerisation, kcal·mol

-1
 

e
The Gibbs free energy barrier for the reverse reaction of tautomerisation, kcal·mol

-1
 

fThe electronic energy barrier for the reverse reaction of tautomerisation, kcal·mol-1 
gThe time necessary to reach 99.9% of the equilibrium concentration between the reactant and the product of the 

tautomerisation reaction, s 

See also summary Table S2 for the Gibbs and electronic energies of the mispairs and TSs relatively the global minima – 

the T·T(w) and C·C*(WC) mispairs.  
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(a) (b) 

 

 

(c)  

Fig. 4. Stationary structures on the reaction pathways of the (a) C·C(w)↔C·C*(WC), 

(b) C·C*(WC)↔C*·C*(w) and (c) C*·C*(w)↔C*O2·C(w) tautomerisations via the sequential DPT 

accompanied by the structural rearrangement of the base pair obtained at the B3LYP/6-311++G(d,p) level of 

theory. For the designations see Fig. 1.  
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(a) (b) 

Fig. 6. Interconversion of the pseudo-twofold symmetrical (a) C·C(w) and (b) C*·C*(w) DNA mismatches via 

the tautomeric transition. Presented isoenergetic structures are linked with each other by the pseudo-dyadic axis 

of symmetry. For the designations see Fig. 1. 

 

 

  
(a) (b) 

Fig. 5. Exchange of the patterns of the intermolecular AH···B, AH···HB H-bonds and attractive O/N···O van 

der Waals contacts (their energies EAH···B/AH···HB/O/N···O are estimated by the EML formula at the (3,-1) BCPs) 

along the IRC of the biologically important (a) C·C(w)↔C·C*(WC) and (b) C·C*(WC)↔C*·C*(w)

tautomerisations via the sequential DPT accompanied by the structural rearrangement of the base pair obtained 

at the B3LYP/6-311++G(d,p) level of theory (see Figs. 4, S4 and Tables S1, S7). 
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