Surface modification of alumina-coated silica nanoparticles in aqueous sols with phosphonic acids and impact on nanoparticle interactions†
Abstract
It is often necessary to tailor nanoparticle (NP) interactions and their compatibility with a polymer matrix by grafting organic groups, but the commonly used silanization route offers little versatility, particularly in water. Herein, alumina-coated silica NPs in aqueous sols have been modified for the first time with low molecular-weight phosphonic acids (PAs) bearing organic groups of various hydrophobicities and charges: propyl, pentyl and octyl PAs, and two PAs bearing hydrophilic groups, either a neutral diethylene glycol (DEPA) or a potentially charged carboxylic acid (CAPA) group. The interactions and aggregation in the sols have been investigated using zeta potential measurements, dynamic light scattering, transmission electron microscopy, and small-angle scattering methods. The surface modification has been studied using FTIR and 31P MAS NMR spectroscopies. Both high grafting density ρ and high hydrophobicity of the groups on the PAs induced aggregation, whereas suspensions of NPs grafted by DEPA remained stable up to the highest ρ. Unexpectedly, CAPA-modified NPs showed aggregation even at low ρ, suggesting that the carboxylic end group was also grafted to the surface. Surface modification of aqueous sols with PAs allows thus for the grafting of a higher density and a wider variety of organic groups than organosilanes, offering an increased control of the interactions between NPs, which is of interest for designing waterborne nanocomposites.