Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 6, 2015

Edge reconstruction-mediated graphene fracture

Author affiliations

Abstract

Creation of free edges in graphene during mechanical fracture is a process that is important from both fundamental and technological points of view. Here we derive an analytical expression for the energy of a free-standing reconstructed chiral graphene edge, with chiral angle varying from 0° to 30°, and test it by first-principles computations. We then study the thermodynamics and kinetics of fracture and show that during graphene fracture under uniaxial load it is possible to obtain fully reconstructed zigzag edges through sequential reconstructions at the crack tip. The preferable condition for this process is high temperature (T ∼ 1000 K) and low (quasi-static) mechanical load (KI ∼ 5.0 eV Å−5/2). Edge configurations of graphene nanoribbons may be tuned according to these guidelines.

Graphical abstract: Edge reconstruction-mediated graphene fracture

Article information


Submitted
28 Oct 2014
Accepted
05 Dec 2014
First published
08 Dec 2014

Nanoscale, 2015,7, 2716-2722
Article type
Paper
Author version available

Edge reconstruction-mediated graphene fracture

Z. Zhang, A. Kutana and B. I. Yakobson, Nanoscale, 2015, 7, 2716 DOI: 10.1039/C4NR06332E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements