Jump to main content
Jump to site search

Issue 15, 2015
Previous Article Next Article

Centrifugo-pneumatic multi-liquid aliquoting – parallel aliquoting and combination of multiple liquids in centrifugal microfluidics

Author affiliations

Abstract

The generation of mixtures with precisely metered volumes is essential for reproducible automation of laboratory workflows. Splitting a given liquid into well-defined metered sub-volumes, the so-called aliquoting, has been frequently demonstrated on centrifugal microfluidics. However, so far no solution exists for assays that require simultaneous aliquoting of multiple, different liquids and the subsequent pairwise combination of aliquots with full fluidic separation before combination. Here, we introduce the centrifugo-pneumatic multi-liquid aliquoting designed for parallel aliquoting and pairwise combination of multiple liquids. All pumping and aliquoting steps are based on a combination of centrifugal forces and pneumatic forces. The pneumatic forces are thereby provided intrinsically by centrifugal transport of the assay liquids into dead end chambers to compress the enclosed air. As an example, we demonstrate simultaneous aliquoting of 1.) a common assay reagent into twenty 5 μl aliquots and 2.) five different sample liquids, each into four aliquots of 5 μl. Subsequently, the reagent and sample aliquots are simultaneously transported and combined into twenty collection chambers. All coefficients of variation for metered volumes were between 0.4%–1.0% for intra-run variations and 0.5%–1.2% for inter-run variations. The aliquoting structure is compatible to common assay reagents with a wide range of liquid and material properties, demonstrated here for contact angles between 20° and 60°, densities between 789 and 1855 kg m−3 and viscosities between 0.89 and 4.1 mPa s. The centrifugo-pneumatic multi-liquid aliquoting is implemented as a passive fluidic structure into a single fluidic layer. Fabrication is compatible to scalable fabrication technologies such as injection molding or thermoforming and does not require any additional fabrication steps such as hydrophilic or hydrophobic coatings or integration of active valves.

Graphical abstract: Centrifugo-pneumatic multi-liquid aliquoting – parallel aliquoting and combination of multiple liquids in centrifugal microfluidics

Back to tab navigation

Supplementary files

Publication details

The article was received on 06 May 2015, accepted on 24 Jun 2015 and first published on 24 Jun 2015


Article type: Paper
DOI: 10.1039/C5LC00513B
Author version
available:
Download author version (PDF)
Lab Chip, 2015,15, 3250-3258
  • Open access: Creative Commons BY license
  •   Request permissions

    Centrifugo-pneumatic multi-liquid aliquoting – parallel aliquoting and combination of multiple liquids in centrifugal microfluidics

    F. Schwemmer, T. Hutzenlaub, D. Buselmeier, N. Paust, F. von Stetten, D. Mark, R. Zengerle and D. Kosse, Lab Chip, 2015, 15, 3250
    DOI: 10.1039/C5LC00513B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements