Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2015
Previous Article Next Article

Bimodal crystallization at polymer–fullerene interfaces

Author affiliations

Abstract

The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM–polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals impedes the growth of micron-sized, needle-like PCBM crystals. A combination of neutron reflectivity and GIXD measurements, also allows us to observe the establishment of a liquid–liquid equilibrium composition-profile between the PCBM layer and a polymer-rich layer, before crystallization occurs. While the interfacial composition-profile is independent of polymer-film-thickness, the growth-rate of nanoscale PCBM crystals is significantly larger for thinner polymer films. A similar thickness-dependent behavior is observed for different molecular weights of entangled polymer. We suggest that the behavior may be related to enhanced local-polymer-chain-mobility in nanocomposite thin-films.

Graphical abstract: Bimodal crystallization at polymer–fullerene interfaces

Back to tab navigation

Supplementary files

Article information


Submitted
22 Sep 2014
Accepted
26 Nov 2014
First published
26 Nov 2014

This article is Open Access

Phys. Chem. Chem. Phys., 2015,17, 2216-2227
Article type
Paper
Author version available

Bimodal crystallization at polymer–fullerene interfaces

D. Môn, A. M. Higgins, D. James, M. Hampton, J. E. Macdonald, M. B. Ward, P. Gutfreund, S. Lilliu and J. Rawle, Phys. Chem. Chem. Phys., 2015, 17, 2216
DOI: 10.1039/C4CP04253K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements