Flattening of a patterned compliant solid by surface stress†
Abstract
We measured the shape change of periodic ridge surface profiles in gelatin organogels resulting from deformation driven by their solid–vapor surface stress. A gelatin organogel was molded onto poly-dimethylsiloxane (PDMS) masters having ridge heights of 1.7 and 2.7 μm and several periodicities. Gel replicas were found to have a shape deformed significantly compared to their PDMS master. Systematically larger deformations in gels were measured for lower elastic moduli. Measuring the elastic modulus independently, we estimate a surface stress of 107 ± 7 mN m−1 for the organogels in solvent composed of 70 wt% glycerol and 30 wt% water. Shape changes are in agreement with a small strain linear elastic theory. We also measured the deformation of deeper ridges (with height 13 μm), and analysed the resulting large surface strains using finite element analysis.
Please wait while we load your content...